质数列指由所有质数构成的数列,又称素数列。特别的,将1可以排入素数列中。
性质
1、全质数列
由所有质数组成的数列,2、3、5、7、11、13、17,全质数列没有通项公式。
2、等差质数列
由质数组成的等差数列。
扩展资料
质数的个数是无穷的。欧几里得的《几何原本》中有一个经典的证明。它使用了证明常用的方法:反证法。具体证明如下:假设质数只有有限的n个,从小到大依次排列为p1,p2,……,pn,设N=p1×p2×……×pn,那么,N+1是素数或者不是素数。
如果N+1为素数,则N+1要大于p1,p2,……,pn,所以它不在那些假设的素数集合中。
1、如果为合数,因为任何一个合数都可以分解为几个素数的积;而N和N+1的最大公约数是1,所以不可能被p1,p2,……,pn整除,所以该合数分解得到的素因数肯定不在假设的素数集合中。
因此无论该数是素数还是合数,都意味着在假设的有限个素数之外还存在着其他素数。所以原先的假设不成立。也就是说,素数有无穷多个。
2、其他数学家给出了一些不同的证明。欧拉利用黎曼函数证明了全部素数的倒数之和是发散的,恩斯特·库默的证明更为简洁,哈里·弗斯滕伯格则用拓扑学加以证明。
参考资料来源:百度百科-质数
参考资料来源:百度百科-质数列
质数又称为素数,是一个大于1的自然数,除了1和它自身外,不能被其他自然数整除的数叫做质数;否则称为合数。
质数列是指由所有质数构成的数列,又称素数列。特别的,我们将1可以排入素数列中。
质数列及其变式:
例题1:2,3,5,(),11,13
解析:质数列是一个非常重要的数列,质数即只能被1和本身整除的数。
质数列,是指由所有质数构成的数列,又称素数列。
质数列分为两种:全质数列、等差质数列。
1.全质数列是由所有质数构成的数列。如2,3,5,7,11,13,17......
2.等差质数列是由质数组成的等差数列。如7,37,67......
质数列:首先是数列,也就是很多个数构成的一列数,并且构成这个数列的每个数都是质数
质数:约数只有1和本身的数。