如图所示:
扩展资料:
一函数f若要是一明确的反函数,它必须是一双射函数,即:
(单射)陪域上的每一元素都必须只被f映射到一次:不然其反函数将必须将元素映射到超过一个的值上去。
(满射)陪域上的每一元素都必须被f映射到:
不然将没有办法对某些元素定义f的反函数。若f为一实变函数,则若f有一明确反函数,它必通过水平线测试,即一放在f图上的水平线必对所有实数k,通过且只通过一次。
定理:严格单调函数必定有严格单调的反函数,并且二者单调性相同。
在证明这个定理之前先介绍函数的严格单调性。设y=f(x)的定义域为D,值域为f(D)。如果对D中任意两点x1和x2,当x1
证明:设f在D上严格单增,对任一y∈f(D),有x∈D使f(x)=y。而由于f的严格单增性,对D中任一x'
总之能使f(x)=y的x只有一个,根据反函数的定义,f存在反函数f-1。
任取f(D)中的两点y1和y2,设y1 根据f的严格单增性,有y1≥y2,这和我们假设的y1 如果f在D上严格单减,证明类似。 参考资料来源:百度百科-反函数
y=x的负三分之一次方的图像:
扩展资料:
图像有下列性质:
1、图像都通过点(1,1);
2、图像在区间(0,+∞)上是减函数;(内容补充:若为X-2,易得到其为偶函数。利用对称性,对称轴是y轴,可得其图像在区间(-∞,0)上单调递增。其余偶函数亦是如此)。
3、在第一象限内,有两条渐近线(即坐标轴),自变量趋近0,函数值趋近+∞,自变量趋近+∞,函数值趋近0。
应该是这样的。
这是用软件画的,如图,当X从左边趋向于0为负无穷,从右边趋向于零为正无穷;X=无穷时,Y=0.
望采纳