将a(
+1 b
)+b(1 c
+1 c
)+c(1 a
+1 a
) =?3变形如下,1 b
a(
+1 b
)+1+b( 1 c
+1 a
)+1+c( 1 c
+1 a
)+1=0,1 b
即a(
+1 a
+1 b
)+b(1 c
+1 a
+1 b
)+c(1 c
+1 a
+1 b
)=0,1 c
∴(a+b+c)(
+1 a
+1 b
)=0,1 c
∴(a+b+c)?
=0,bc+ac+ab abc
∴a+b+c=0(舍)或bc+ac+ab=0.
若bc+ac+ab=0,则
(a+b+c)2=a2+b2+c2+2(bc+ac+ab)=a2+b2+c2=1,
∴a+b+c=±1.
∴a+b+c的值为1,-1.