2.设a,b,c为实数,且|a|+a=0,|ab|=ab,|c|-c=0,求代数式|b|-|a+b|-|c-b|+|a-c|的值.
3.若m<0,n>0,|m|<|n|,且|x+m|+|x-n|=m+n, 求x的取值范围.
4.设(3x-1)7=a7x7+a6x6+…+a1x+a0,试求a0+a2+a4+a6的值.
5.已知方程组
有解,求k的值.
6.解方程2|x+1|+|x-3|=6.
7.解方程组
8.解不等式||x+3|-|x-1||>2.
9.比较下面两个数的大小:
10.x,y,z均是非负实数,且满足:
x+3y+2z=3,3x+3y+z=4,
求u=3x-2y+4z的最大值与最小值.
11.求x4-2x3+x2+2x-1除以x2+x+1的商式和余式.
12.如图1-88所示.小柱住在甲村,奶奶住在乙村,星期日小柱去看望奶奶,先在北山坡打一捆草,又在南山坡砍一捆柴给奶奶送去.请问:小柱应该选择怎样的路线才能使路程最短?
13.如图1-89所示.AOB是一条直线,OC,OE分别是∠AOD和∠DOB的平分线,∠COD=55°.求∠DOE的补角.
14.如图1-90所示.BE平分∠ABC,∠CBF=∠CFB=55°,∠EDF=70°.求证:BC‖AE.
15.如图1-91所示.在△ABC中,EF⊥AB,CD⊥AB,∠CDG=∠BEF.求证:∠AGD=∠ACB.
16.如图1-92所示.在△ABC中,∠B=∠C,BD⊥AC于D.求
17.如图1-93所示.在△ABC中,E为AC的中点,D在BC上,且BD∶DC=1∶2,AD与BE交于F.求△BDF与四边形FDCE的面积之比.
18.如图1-94所示.四边形ABCD两组对边延长相交于K及L,对角线AC‖KL,BD延长线交KL于F.求证:KF=FL.
19.任意改变某三位数数码顺序所得之数与原数之和能否为999?说明理由.
20.设有一张8行、8列的方格纸,随便把其中32个方格涂上黑色,剩下的32个方格涂上白色.下面对涂了色的方格纸施行“操作”,每次操作是把任意横行或者竖列上的各个方格同时改变颜色.问能否最终得到恰有一个黑色方格的方格纸?
21.如果正整数p和p+2都是大于3的素数,求证:6|(p+1).
22.设n是满足下列条件的最小正整数,它们是75的倍数,且恰有
23.房间里凳子和椅子若干个,每个凳子有3条腿,每把椅子有4条腿,当它们全被人坐上后,共有43条腿(包括每个人的两条腿),问房间里有几个人?
24.求不定方程49x-56y+14z=35的整数解.
25.男、女各8人跳集体舞.
(1)如果男女分站两列;
(2)如果男女分站两列,不考虑先后次序,只考虑男女如何结成舞伴.
问各有多少种不同情况?
26.由1,2,3,4,5这5个数字组成的没有重复数字的五位数中,有多少个大于34152?
27.甲火车长92米,乙火车长84米,若相向而行,相遇后经过1.5秒(s)两车错过,若同向而行相遇后经6秒两车错过,求甲乙两火车的速度.
28.甲乙两生产小队共同种菜,种了4天后,由甲队单独完成剩下的,又用2天完成.若甲单独完成比乙单独完成全部任务快3天.求甲乙单独完成各用多少天?
29.一船向相距240海里的某港出发,到达目的地前48海里处,速度每小时减少10海里,到达后所用的全部时间与原速度每小时减少4海里航行全程所用的时间相等,求原来的速度.
30.某工厂甲乙两个车间,去年计划完成税利750万元,结果甲车间超额15%完成计划,乙车间超额10%完成计划,两车间共同完成税利845万元,求去年这两个车间分别完成税利多少万元?
31.已知甲乙两种商品的原价之和为150元.因市场变化,甲商品降价10%,乙商品提价20%,调价后甲乙两种商品的单价之和比原单价之和降低了1%,求甲乙两种商品原单价各是多少?
32.小红去年暑假在商店买了2把儿童牙刷和3支牙膏,正好把带去的钱用完.已知每支牙膏比每把牙刷多1元,今年暑假她又带同样的钱去该商店买同样的牙刷和牙膏,因为今年的牙刷每把涨到1.68元,牙膏每支涨价30%,小红只好买2把牙刷和2支牙膏,结果找回4角钱.试问去年暑假每把牙刷多少钱?每支牙膏多少钱?
33.某商场如果将进货单价为8元的商品,按每件12元卖出,每天可售出400件,据经验,若每件少卖1元,则每天可多卖出200件,问每件应减价多少元才可获得最好的效益?
34.从A镇到B镇的距离是28千米,今有甲骑自行车用0.4千米/分钟的速度,从A镇出发驶向B镇,25分钟以后,乙骑自行车,用0.6千米/分钟的速度追甲,试问多少分钟后追上甲?
35.现有三种合金:第一种含铜60%,含锰40%;第二种含锰10%,含镍90%;第三种含铜20%,含锰50%,含镍30%.现各取适当重量的这三种合金,组成一块含镍45%的新合金,重量为1千克.
(1)试用新合金中第一种合金的重量表示第二种合金的重量;
(2)求新合金中含第二种合金的重量范围;
(3)求新合金中含锰的重量范围.
http://www.1230.org/Article/Class9/200404/294.html
基础训练
一、填空题
1.因为 的立方是-64,所以-64的立方根是 ,即
2.-1的立方根是 ,0的立方根是 , 的立方根是 .
3.一个体积为8 的正方体,其棱长是
二、选择题
4.一个数的立方根是它本身,则这个数是( )
A 1 B 0或1 C -1或1 D 1,0或-1
5.若一个数的平方根是 ,则这个数的立方根是 ( )
A、4 B、 C、2 D、
6. 下列说法中正确的是 ( )
2006—2007学年(上)初一数学第一次月考试卷
总分:100分 时间:120分钟
一、 填空(每空2分,共30分)
1、如果+15圈表示沿逆时针方向转15圈,那么-5圈表示
______.
2、化简:-(-5)=_____ -[-(-5)]=_______.
3、绝对值小于 的整数有_______.
4、用“›”或“‹”连接下列各数:- ___-
-
5、若X的相反数是7,则X=____,若-X的相反数是-7.5,
则X=_______.
6、若m为负数,则 |m |+m=_______ |-m |
+m=_______.
7、在-0.5,2,-1,0,0.7, 中,整数是________, 正数
是___________
8、若m, n互为相反数,则 |m-1+n |=____________.
9、若 |x+2|+|y-3|=0,则xy=________.
10、点A表示-2,从点A出发,沿数轴移动5个单位到达点B,则点B表示的数是_______.
二、选择题(每题2分,共20分)
1、一个数是8,另一个数比8的相反数小2,则这两个数的
和为( )
A 6 B -2 C -6 D 2
2、0是 ( )
A 正整数 B 最小的有理数
C 最小的整数 D 绝对值最小的数
3、在 |-3|,-|0.5|,-|10|,-|-0.4|,-[-(-2)],
- 有理数中,负数有( )
A 2个 B 3个 C 4个 D 5个
4、已知两个数的和为负数,则( )
A 两个数必须都是正数 B 两个数都是负数
C 两个数至少有一个是负数 D两数必为一正一负
5、三个数 -12 ,-2 ,+7 的和比它们的绝对值的和小( )
A 2 B 7 C -2 D 12
6、下列各式运算正确的有( )
① (+ )+(- )=- ② 0+(-101)=101
③ (- )+( )=0 ④ (-7)+(-7)=0
A 0个 B 1个 C 2个 D 3个
7、若 〈0 ,则 + 为( )
A 0 B -1 C -2 D 1
8、已知一列数:1 ,4 ,9 ,16 ,25 ,------,则这列数的
第100个数为( )
A 10000 B 10201 C 9801 D 9604
9、四个各不相等的整数a ,b ,c ,d , 它们的积abcd=9,
则a+b+c+d的值是( )
A 0 B 3 C 4 D 不能确定
10、一个病人每天下午需测量一次血压,该病人上星期日的
收缩压为160个单位,本周一至周四收缩压的变化情况(与
前一天比较)分别为:+30,-20,+17,-20(设升为正,降
为负,则星期四该病人的收缩压为( )
A 133个单位 B 160个单位
C 167个单位 D 140个单位
三、计算(每题3分,共30分)
1、(-15)+23-(-17)+32 2、 - -27
3、 (-2 +4 )÷(- ) 4、23×(-5)-(-3)÷
5、 (-7)×(-3)×(-0.5)+(-12)×(-2.6)÷2
6、(4 -3 )×(-2)-2 ÷(-0.5)
7、(-0.125) ×(- )×(-8)×(+1 )
8、(- )÷ -0.25×(-5)×(-64)
9、-1-{(-27)-[3+0.4×(-1 )] ÷(-2)}
10、( -1)( -1)( -1)……( -1)( -1)( -1)
四、解答题(6分+6分+8分)
1、下表列出国外九个城市与北京的时差(带正号的数表示同一时刻比北京时间早的时数)
城市 东京 纽约 巴黎 芝加哥
时差/h +1 -13 -7 -14
⑴ 如果现在是北京时间8:30,那么现在纽约时间是多少?东京时间是多少?
⑵ 小琳现在想给远在巴黎的姐姐打电话,你认为合适吗?
2、某检修小组乘一辆汽车沿公路检修线路,约定向东为正,某天从A地出发到收工行走的记录如下(单位:千米)
+15, -2, +5, -1, +10, -3
⑴ 问收工时,检修小组在A地的哪一边,距A地多远?
⑵ 若汽车每千米耗油2.8升,求从出发到收工共耗油多少升?
3、如图,一个点从数轴上的原点开始,先向右移动3个单位长度,再向左移动5个单位长度,可以看出终点表示的数B是-2,已知点A,B是数轴上的点,参照下图并思考,完成下列各题:
⑴ 如果点A表示的数是-3,将A点向右移动7个单位长度,那么点B表示的数是_______,A、B两点间的距离是_____个单位长度.
⑵ 若A表示-4,将A向右移动168个单位长度,再向左移动246个单位长度,则终点B表示的数是______, A、B两点间的距离是________个单位长度.
rubbish
1. 1-2+3-4+5-……+99-100=?
答:-50
2. 1+2+3+……+40+某数=0,求某数。
答:-820
3. 设一根竹竿的两端点为A、B,中点为C,将此竹竿放在数线上使A与-9对齐,B刚好与25对齐,今移动竹竿使C与原点O对齐,此时B与哪个数对齐?
答:17
4. (1)比-4大-5的数是 (2)比6大-12的数是 (3)比-4小6的数是 (4)比-4小-8的数是
答:(1) -9 (2) -6 (3) -10 (4) 4
5. 若甲、乙两数互为相反数,且甲数-乙数=-30,则甲数=?
答:-15
6. -9与25两数同时减去某数后,会成为相反数,求某数。
答:8
7. 若∣甲数-2∣=4,求甲数=?
答:6或-2
8. 若∣3-丁数∣=-1,求丁数。
答:无解
9. (1)若∣甲数∣=3,∣乙数∣= 1,求甲、 乙两数。 (2)承(1),若甲数为负数,乙数为正数,求甲数-乙数的结果。
答:(1) 甲数=±3,乙数=±1 (2)-4
10. 某电脑工厂的每日生产目标是250台,但实际生产量每日略有变动,下表为一周内的实际生产量与目标生产量增减情形,已知这一周内每日的平均生产量是246台,试回答下列问题:
星期 一 二 三 四 五 六 日
增减 -5 +7 -3 +4 +10 -9 ?
(1)星期日的实际生产量是多少台? (2)在这一周内生产最高日与最低日,相差多少 台?
答:(1) 218台 (2) 42台