(1)①∵12=1,21=2,∴12<21,②∵23=8,32=9,∴23<32,③∵34=81,43=64,∴34>43,④∵45=1024,54=625,∴45>54,⑤∵56=15625,65=7776,∴56>65,故答案为:(1)<,<,>,>;(2)通过观察可以看出;n≤2时,nn+1<(n+1)n;n>2时,nn+1>(n+1)n;故答案为:≤2,>2;(3)由(2)得到的结论;2011>2,∴20112012>20122011,故答案为:>.