1)a(n+1)= an q所以得证 2)a(n+2)=a(n+1)+d=a(n+1)+a(n+1)-an=2a(n+1)-an得证 3)a(n+3)=(n+3)^2=n^2+6n+9= a(n+2)^2+b(n+1)^2+cn^2对应系数相等可得a+b+c=14a+2b=64a+b=9a=3, b=-3,c=1所以 a(n+3)=3(n+2)^2-3(n+1)^2+n^2=3a(n+2)-3a(n+1)+an得证