小学数学竞赛常用数据

2024-12-12 21:35:40
推荐回答(5个)
回答1:

首先非常高兴能回答您的问题

1 、每份数×份数=总数
总数÷每份数=份数
总数÷份数=每份数
2 、1倍数×倍数=几倍数
几倍数÷1倍数=倍数
几倍数÷倍数=1倍数
3 、速度×时间=路程
路程÷速度=时间
路程÷时间=速度
4 、单价×数量=总价
总价÷单价=数量
总价÷数量=单价
5 、工作效率×工作时间=工作总量
工作总量÷工作效率=工作时间
工作总量÷工作时间=工作效率
6 、加数+加数=和
和-一个加数=另一个加数
7 、被减数-减数=差
被减数-差=减数
差+减数=被减数
8 、因数×因数=积
积÷一个因数=另一个因数
9 、被除数÷除数=商
被除数÷商=除数
商×除数=被除数

1 、正方形
C周长 S面积 a边长
周长=边长× 4
C=4a
面积=边长×边长
S=a×a
2 、正方体
V:体积 a:棱长
表面积=棱长×棱长×6
S表=a×a×6
体积=棱长×棱长×棱长
V=a×a×a
3 、长方形
C周长 S面积 a边长
周长=(长+宽)×2
C=2(a+b)
面积=长×宽
S=ab
4 、长方体
V:体积 s:面积 a:长 b: 宽 h:高
(1)表面积(长×宽+长×高+宽×高)×2
S=2(ab+ah+bh)
(2)体积=长×宽×高
V=abh
5 、三角形
s面积 a底 h高
面积=底×高÷2
s=ah÷2
三角形高=面积 ×2÷底
三角形底=面积 ×2÷高
6 、平行四边形
s面积 a底 h高
面积=底×高
s=ah
7 、 梯形
s面积 a上底 b下底 h高
面积=(上底+下底)×高÷2
s=(a+b)× h÷2
8、 圆形
S面积 C周长 ∏ d=直径 r=半径
(1)周长=直径×∏=2×∏×半径
C=∏d=2∏r
(2)面积=半径×半径×∏
9 、圆柱体
v:体积 h:高 s;底面积 r:底面半径 c:底面周长
(1)侧面积=底面周长×高
(2)表面积=侧面积+底面积×2
(3)体积=底面积×高
(4)体积=侧面积÷2×半径
10 、圆锥体
v:体积 h:高 s;底面积 r:底面半径
体积=底面积×高÷3
总数÷总份数=平均数

和差问题的公式
(和+差)÷2=大数
(和-差)÷2=小数

和倍问题
和÷(倍数-1)=小数
小数×倍数=大数
(或者 和-小数=大数)

差倍问题
差÷(倍数-1)=小数
小数×倍数=大数
(或 小数+差=大数)

植树问题
1 非封闭线路上的植树问题主要可分为以下三种情形:
⑴如果在非封闭线路的两端都要植树,那么:
株数=段数+1=全长÷株距-1
全长=株距×(株数-1)
株距=全长÷(株数-1)

⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数

⑶如果在非封闭线路的两端都不要植树,那么:
株数=段数-1=全长÷株距-1
全长=株距×(株数+1)
株距=全长÷(株数+1)

2 封闭线路上的植树问题的数量关系如下
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数

盈亏问题
(盈+亏)÷两次分配量之差=参加分配的份数
(大盈-小盈)÷两次分配量之差=参加分配的份数
(大亏-小亏)÷两次分配量之差=参加分配的份数

相遇问题
相遇路程=速度和×相遇时间
相遇时间=相遇路程÷速度和
速度和=相遇路程÷相遇时间

追及问题
追及距离=速度差×追及时间
追及时间=追及距离÷速度差
速度差=追及距离÷追及时间

流水问题
顺流速度=静水速度+水流速度
逆流速度=静水速度-水流速度
静水速度=(顺流速度+逆流速度)÷2
水流速度=(顺流速度-逆流速度)÷2

浓度问题
溶质的重量+溶剂的重量=溶液的重量
溶质的重量÷溶液的重量×100%=浓度
溶液的重量×浓度=溶质的重量
溶质的重量÷浓度=溶液的重量

利润与折扣问题
利润=售出价-成本
利润率=利润÷成本×100%=(售出价÷成本-1)×100%
涨跌金额=本金×涨跌百分比
折扣=实际售价÷原售价×100%(折扣<1)
利息=本金×利率×时间
税后利息=本金×利率×时间×(1-20%)
平方差公式

--------------------------------------------------------------------------------

还找了个专题训练

1、甲、乙两车分别从A、B两地出发相向而行。出发时,甲、乙的速度比是5:4,相遇后,甲的速度减少20%,乙的速度增加20%,这样,当甲到达B地时,乙离A地还有10千米。那么A、B两地相距___千米。

【解】甲、乙原来的速度比是5:4,相遇后的速度比是

5×(1-20%):4×(1+20%)=4:4.8=5:6。

相遇时,甲、分别走了全程的 和 。

A、B两地相距10÷( - × )=450(千米)

2、早晨8点多钟有两辆汽车先后离开化肥厂向幸福村开去。两辆车的速度都是每小时60千米。8点32分的时候,第一辆汽车离开化肥厂的距离是第二辆汽车的三倍。到了8 点39分的时候,第一辆汽车离开化肥厂的距离是第二辆汽车的2倍。那么,第一辆汽车是8点几分离开化肥厂的?

【解】39-32=7,这7分钟每辆行驶的距离恰好等于第二辆车在8点32分行过的距离的1(=3-2)倍,因此第一辆车在8点32分已行了7×3=21(分),它是8点11分离开化肥厂的(32-21=11)

注:本题结论与两车的速度大小无关,只要它们的速度相同,答案都是8点11分。

3、甲、乙两车都从A地出发经过B地驶往C地,A、B两地的距离等于B、C两地的距离。乙车的速度是甲车速度的80%。已知乙车比甲车早出发11分钟,但在B地停留了7分钟;甲则不住地驶往C地。最后乙车比甲车迟4分钟到达C地。那么,乙车出发后____分钟时,甲车就超过乙车。

【解】从A地到C地,不考虑中途停留,乙车比甲车多用时8分钟.最后甲比乙早到4分钟,
所以甲车在中点B超过乙.甲车行全程所用时间是乙所用时间的80%,所以乙行全程用
8÷(1-80%)=40(分钟)
甲行全程用40-8=32(分钟)
甲行到B用32÷2=16(分钟)
即在乙出发后11+16=27(分钟)甲车超过乙车

4、铁路旁的一条平等小路上,有一行人与一骑车人同时向南行进,行人速度为3.6千米/小时,骑车人速度为10.8千米/小时。这时,有一列火车从他们背后开过来,火车通过行人用22秒钟,通过骑车人用26秒钟。这列火车的车身总长是____(①22米②56米③781米④286米⑤308米)

【解】设这列火车的速度为x米/秒,又知行人速度为1米/秒,骑车人速度为3米/秒。依题意,这列火车的车身长度是

(x-1)×22=(x-3)×26

化简得4 x=56,即x=14(米/秒)

所以火车的车身总长是(14-1)×22=286(米),故选④。

5、人乘竹排沿江顺水飘流而下,迎面遇到一艘逆流而上的快艇,他问快艇驾驶员:“你后面有轮船开过来吗?”快艇驾驶员回答:“半小时前我超过一艘轮船。”竹排继续顺水飘流了1小时遇到了迎面开来的这艘轮船。那么快艇静水速度是轮船静水速度的___倍。

【解】对于竹排来说,它自身不动,而快艇、轮船都以它们在静水中的速度向它驶来。

快艇半小时走的路程,轮船用了1小时,因此快艇静水中的速度是轮船静水速度的2倍。

6、某司机开车从A城到B城。如果按原定速度前进,可准时到达。当路程走了一半时,司机发现前一半路程中,实际平均速度只可达到原定速度的11/13 。现在司机想准时到达B城,在后一半的行程中,实际平均速度与原速度的比是_______。

【解】前一半路程用的时间是原定的 ,多用了 -1= 。要起准时到达,后一半路程只能用原定时间的1- = ,所以后一半行程的速度是原定速度的 ,即11:9

7、甲、乙两辆汽车分别从A、B两站同时出发,相向而行,第一次相遇在距A站28千米处,相遇后两车继续行进,各自到达B、A两站后,立即沿原路返回,第二次相遇在距A站60千米处。A、B两站间的路程是___千米。

【解】甲、乙第一次相遇在C处,此时,甲、乙所行路程之和等于A、B间的距离。

甲、乙第二次相遇在D处,乙由C到A再沿反方向行到D,共走60+28=88(千米),甲由C到B再沿反方向行到D。此时,甲、乙所行路程之和等于A、B间的距离的2倍,于是第二次之和等于A、B间的距离的2倍,甲、乙所走的路程也分别是第一次相遇时各自所行路程的2倍。这样,第一次相遇时乙所行路程BC=88÷2=44(千米)。从而AB=28+44=72(千米)

8、一个圆的周长为1.26米,两只蚂蚁从一条直径的两端同时出发沿圆周相向爬行.这两只蚂蚁每秒分别爬行5.5厘米和3.5厘米.它们每爬行1秒,3秒,5秒……(连续的奇数),就调头爬行.那么,它们相遇时已爬行的时间是多少秒?

半圆周长63厘米。如果蚂蚁不调头走,用63÷(5.5+3.5)=7秒即相遇

由于13-11+9-7+5-3+1=7,所以经过13+11+9+7+5+3+1=49秒,两只蚂蚁相遇。

谢谢!

回答2:

我小学的时候老师是分开讲的。
一、数
等比数列和等差数列你得好好研究一下,后面的应用题里会用到。我就不说了。

注意各种运算律,比如这道题
10-10.5÷[5.2×14.6-(9.2×5.2+5.4×3.7-4.6×1.5)] 答案 9.3
这道题要运用的是乘法结合律的逆定理,将中括号里的式子换位结合,最后得数是15,再与前面的数运算,得到答案。

还有类似 1/(1×2)+1/(2×3)+...+1/(2005×2006) 的类型【“/”是分数线】
这种题要写成两个数相减的形式,1/(1×2)=1/1-1/2,1/(2×3)=1/2-1/3
原式=(1/1-1/2)+(1/2-1/3)+...+(1/2005-1/2006)
=1/1-1/2+1/2-1/3+...+1/2005-1/2006
=1-1/2006
=2005/2006【裂项法应用题】

还要注意繁分数的计算,自定义符号的运算,高斯符号的应用和数的比较大小

注意:1.分离思想,就是把一个整体式子看作一个个小的式子组合成的,分别进
行研究
2.裂项法(如上)

二、应用题【这个是重点】
1.方程 包括字母,代数式,一元一次方程,二元一次方程,三元的,都要会做,这个我就不详细说了
2.应用题 主要要明确数量关系,然后最好通过列表格或者画线段图的方法,弄出数量关系,然后列出式子或者是方程,解出来就行了

打个比方a/2=b/3=c/4,问(a+b)/c的值【重点:比例的性质和代数的用法】
解:比例内项积等于外项积
a/2=b/3,所以3a=2b,a=2b/3
b/3=c/4 所以3c=4b,c=4b/3
(a+b)/c=[(2b/3)+b]/(4b/3)
=... 你自己算吧

三、这是我认为最难得一个部分,二维和三维图形
主要是应用代数的方式,加加减减的,就算出来了,不过还是需要仔细
给你一些公式,最好记住
长方体表面积=(长×宽+长×高+宽×高)×2
长方体体积=长×宽×高
正方体表面积=棱长的平方×6
正方体体积=棱长的立方
圆柱表面积=底面积×2+侧面积
圆柱体积=底面积×高
圆锥体积=底面积×高×1/3
注意勾股定理,这个一定会有,还有圆弧的这部分,我也不太清楚,你可以在网上查查
【圆柱圆锥的底面积求法:注意不要给π定值,除非题目要求,一定要保留在结果中 底面积=π(圆周率)×r(半径)的平方】
记住 一个点 一条线,都是一个图形
http://wenku.baidu.com/view/b1f00af69e31433239689384.html
来这看一下,里头有华罗庚的试题和答案,你可以参考者练习一下。

回答3:

先把小球从1到12任意编号
首先天平两边分别放1、2、3、4和5、6、7、8,有如下两种情况
(1)天平平衡,则次品在剩余的四个球里,称过的八个球为标准球,天平两边分别放1、2、3和9、10、11有如下三种情况
<1>天平平衡,则12为次品
<2>9、10、11轻,则这三个球里有一个球轻,天平两边分别放9和10,如果不平,轻的为次品,如果平衡,则11轻,11为次品
<3>9、10、11重,则这三个球里有一个球重,天平两边分别放9和10,如果不平,重的为次品,如果平衡,则11重,11为次品
(2)天平不平衡,假设1、2、3、4重(1、2、3、4轻的方法与其重的方法完全一样),则天平两边分别放1、2、3、5、6和4、9、10、11、12有如下三种情况
<1>天平平衡,则天平两边分别放7和9,平衡则8为次品,不平则7为次品
<2>1、2、3、5、6重,则1、2、3里有一个球重,天平两边分别放1和2,平衡则3重,3为次品,不平则重的为次品
<3>1、2、3、5、6轻,则5、6轻或者4重,天平两边分别放4、5和9、10,如果4、5重,则4重,4为次品,如果4、5轻,则5轻,5为次品,如果平衡,则6轻,6为次品
(完)
用天平N次称量唯一质量不同小球的问题,称量N次可以得出答案的极限小球个数是(3^n-1)/2 ,也就是说称量三次最多其实可以称量出13个小球,四次可以称量出40个小球,而既要找出不同小球,又要知道它是轻还是重,则N次最多可以称量(3^n-3)/2 个,也就是说三次可以称量12个,四次可以称量39个http://zhidao.baidu.com/q?word=%B8%F8%C4%E313%B8%F6%CD%E2%B1%ED%BF%B4%CB%C6%B6%BC%D2%BB%D1%F9%B5%C4%C7%F2%2C%C6%E4%D6%D0%D6%BB%D3%D0%D2%BB%B8%F6%D6%CA%C1%BF%B2%BB%CD%AC%A3%AC%B8%F8%C4%E3%B8%F6%CC%EC%C6%BD%2C%B3%C6%C1%BF3%B4%CE%D5%D2%B3%F6%D5%E2%B8%F6%C7%F2.&ct=17&pn=0&tn=ikaslist&rn=10

回答4:

告诉你,很多计算题答案都是以今年或近年的年号而定的!

回答5:

长度单位,面积单位,体积单位。