卷积神经网络为什么适合图像处理?

卷积神经网络为什么适合图像处理
2025-03-19 05:51:31
推荐回答(1个)
回答1:

神经网络的本质就在于做信息形式的变换,而要想做数据的处理,首要解决的问题就是如何将数据张量化,问题就在于卷积神经网络要处理的数据必须是向量形式,对于图像这种数据类型来说,如果将其展开成一维的向量,且不说得到向量的维数过高,网络太深导致网络中参数太多,图像中的空间信息也会丢失。
而卷积神经网络能够用卷积的方式从原信息中提取"部分特定的信息(信息跟卷积核相关)",且对于二维的图像来说是原生支持的(不需要处理),这就保留了图像中的空间信息,而空间信息是具有可平移性质的.。
并且卷积神经网络的参数就只是卷积核的参数以及偏置(Bias),而卷积核的参数可以做到共享,卷积核也可以用多个,从多个角度对原图像解读。
这就是卷积神经网络的几个特点:局部感知,参数共享,多核,平移不变性正是因为这些特点,在图像领域处理上,卷积神经网络取代了人工神经网络。
卷积神经网络 (CNN) 是当今最流行的模型之一。这种神经网络计算模型使用多层感知器的变体,并包含一个或多个可以完全连接或池化的卷积层。这些卷积层创建了记录图像区域的特征图,该区域最终被分成矩形并发送出去进行非线性处理。
优点:
图像识别问题的非常高的准确性。自动检测重要特征,无需任何人工监督。权重共享。
缺点:
CNN 不对物体的位置和方向进行编码。缺乏对输入数据空间不变的能力。需要大量的训练数据。