考研数学 高数 隐函数求导

设y=1+xe^(xy),求y✀✀(0)
2024-12-29 21:11:42
推荐回答(4个)
回答1:

∴y''(0)不存在。

回答2:

y=1+xe^(xy),
微分得dy=e^(xy)dx+xe^(xy)*(ydx+xdy),
整理得[1-x^2*e^(xy)]dy=(1+xy)e^(xy)*dx,
所以dy/dx=(1+xy)e^(xy)/[1-x^2*e^(xy)],
x=0时y=1,dy/dx=1
所以d^y/dx^={(y+xy')(2+xy)e^(xy)[1-x^2*e^(xy)]-[-2x-x^2*(y+xy')]e^(2xy)*(1+xy)}/[1-x^2*e^(xy)]^2,
所以x=0时y''=d^y/dx^=2.

回答3:

dy=e^(xy)*dx+xe^(xy)*(xdy+ydx)
y'(x)=dy/dx=(xy+1)e^(xy)/[1-x^2*e^(xy)]
y(0)=y'(0)=1
y''(0)=[(xy+1)e^(xy)]'-[1-x^2*e^(xy)]'
=[y+xy'(0)]+e^(xy)*(y+xy')+2x*e^(xy)+x^2*[e^(xy)]'(边求导边代入)
=y+y=2y=2

回答4:

求导,y'=e^(xy)+x*e^(xy)*[x*y'+y]
二次求导