Cauchy不等式的形式化写法就是:
记两列数分别是ai, bi,则有 (∑ai^2) * (∑bi^2) ≥ (∑ai *bi)^2.
令 f(x) = ∑(ai + x * bi)^2 = (∑bi^2) * x^2 + 2 * (∑ai * bi) * x + (∑ai^2)
则恒有 f(x) ≥ 0.
用二次函数无实根或只有一个实根的条件,就有 Δ = 4 * (∑ai * bi)^2 - 4 * (∑ai^2) * (∑bi^2) ≤ 0.
于是移项得到结论.
还可以用向量来证.
m=(a1,a2.an) n=(b1,b2.bn)
mn=a1b1+a2b2+.+anbn=(a1^+a2^+.+an^)^1/2乘以(b1^+b2^+.+bn^)^1/2乘以cosX.
因为cosX小于等于1,所以:a1b1+a2b2+.+anbn小于等于a1^+a2^+.+an^)^1/2乘以(b1^+b2^+.+bn^)^1/2
这就证明了不等式.
柯西不等式还有很多种方法证,这里只写出两种较常用的证法.