在△ABC中,三个内角A,B,C所对的边分别为a,b,c,已知(a-c)(sinA+sinC)=(a-b)sinB.(1)求角C

2025-01-01 12:58:01
推荐回答(1个)
回答1:

(1)由正弦定理化简(a-c)(sinA+sinC)=(a-b)sinB,得:(a-c)(a+c)=b(a-b),
整理得:a2-c2=ab-b2,即a2+b2-c2=ab,
由余弦定理得cosC=

a2+b2-c2
2ab
=
1
2

∵C为三角形内角,
∴C=
π
3

(2)由(1)得A+B=
3
,即B=
3
-A,
则sinA?sinB=sinAsin(
3
-A)
=sinA(
3
2
cosA+
1
2
sinA)
=
3
2
sinAcosA+
1
2
sin2A
=
3
4
sin2A+
1-cos2A
4

=
1
2
sin(2A-
π
6
)+
1
4

∵A∈(0,
3
),∴2A-
π
6
∈(-
π
6
6
),
∴当2A-
π
6
=
π
2
,即A=
π
3
时,sinA?sinB有最大值
3
4