(1)由正弦定理化简(a-c)(sinA+sinC)=(a-b)sinB,得:(a-c)(a+c)=b(a-b),
整理得:a2-c2=ab-b2,即a2+b2-c2=ab,
由余弦定理得cosC=
=
a2+b2-c2
2ab
,1 2
∵C为三角形内角,
∴C=
;π 3
(2)由(1)得A+B=
,即B=2π 3
-A,2π 3
则sinA?sinB=sinAsin(
-A)2π 3
=sinA(
cosA+
3
2
sinA)1 2
=
sinAcosA+
3
2
sin2A1 2
=
sin2A+
3
4
1-cos2A 4
=
sin(2A-1 2
)+π 6
,1 4
∵A∈(0,
),∴2A-2π 3
∈(-π 6
,π 6
),7π 6
∴当2A-
=π 6
,即A=π 2
时,sinA?sinB有最大值π 3
.3 4