设AB=AC=1,则BC=√2,BD平分∠ABC,由角平分线性质,AD/DC=AB/BC=1/√2,
由比例性质,AD/(AD+DC)=1/(1+√2)=√2-1,
∴AD=√2-1,
由勾股定理,BD=√[(√2-1)^2+1]=√(4-2√2),
BD平分∠ABC,CE⊥BD,
∴△BAD∽△BEC,
∴BD/BC=AD/EC,
∴CE=AD*BC/BD=(√2-1)√2/√(4-2√2)=(2-√2)√(4-2√2)/(4-2√2)=√(4-2√2)/2=BD/2.
延长CE和BA交于F
∵BD平分∠ABC,那么∠FAE=∠CBE(∠ABD=∠CAD)
∵CE⊥BD
∴∠DEF=∠BEC=90°
∵BE=BE
∴△BEF≌△BEC(ASA)
∴EF=CE=1/2CF,即CF=2CE
∵∠DCE=∠ACF=∠ADB(对顶角相等)
∠BAD=∠CAF=90°
AB=AC
∴△ABD≌△ACF(ASA)
∴BD=CF=2CE