解答:解:(I)∵an+1=2an+1(n∈N*),∴an+1+1=2(an+1),
∴{an+1}是以a1+1=2为首项,2为公比的等比数列.∴an+1=2n.
即an=2n-1(n∈N*).
(II)证明:∵
ak
ak+1
=
2k-1
2k+1-1
=
2k-1
2(2k-
1
2
)
<
1
2
,k=1,2,,n,
∴
a1
a2
+
a2
a3
++
an
an+1
<
n
2
.
∵
ak
ak+1
=
2k-1
2k+1-1
=
1
2
-
1
2(2k+1-1)
=
1
2
-
1
3.2k+2k-2
≥
1
2
-
1
3
.
1
2k
,k=1,2,,n,
∴
a1
a2
+
a2
a3
++
an
an+1
≥
n
2
-
1
3
(
1
2
+
1
22
++
1
2n
)=
n
2
-
1
3
(1-
1
2n
)>
n
2
-
1
3
,
∴
n
2
-
1
3
<
a1
a2
+
a2
a3
++
an
an+1
<
n
2
(n∈N*).