数学思想较之于数学基础知识及常用数学方法又处于更高层次,它来源于数学基础知识及常用的数学方法, 在运用数学基础知识及方法处理数学问题时,具有指导性的地位。<一>常用的数学方法:配方法,换元法,消元法,待定系数法;<二>常用的数学思想:数形结合思想,方程与函数思想,建模思想,分类讨论思想和化归与转化思想等。<三>数学思想方法主要来源于:观察与实验,概括与抽象,类比,归纳和演绎等 中考数学专题复习一常用的数学思想和方法 北师大版 一、常用的数学思想(数学中的四大思想) 1.函数与方程的思想 用变量和函数来思考问题的方法就是函数思想,函数思想是函数概念、图象和性质等知识更高层次的提炼和概括,是在知识和方法反复学习中抽象出的带有观念的指导方法。 深刻理解函数的图象和性质是应用函数思想解题的基础,运用方程思想解题可归纳为三个步骤:①将所面临的问题转化为方程问题;②解这个方程或讨论这个方程,得出相关的结论;③将所得出的结论再返回到原问题中去。 2.数形结合思想 在中学数学里,我们不可能把“数”和“形”完全孤立地割裂开,也就是说,代数问题可以几何化,几何问题也可以代数化,“数”和“形 ”在一定条件下可以相互转化、相互渗透。 3.分类讨论思想 在数学中,我们常常需要根据研究对象性质的差异。分各种不同情况予以考察,这是一种重要数学思想方法和重要的解题策略 ,引起分类讨论的因素较多,归纳起来主要有以下几个方面:(1)由数学概念、性质、定理、公式的限制条件引起的讨论;(2)由数学变形所需要的限制条件所引起的分类讨论;(3)由于图形的不确定性引起的讨论;(4)由于题目含有字母而引起的讨论。 分类讨论的解题步骤一般是:(1)确定讨论的对象以及被讨论对象的全体;(2)合理分类,统一标准,做到既无遗漏又无重复 ;(3)逐步讨论,分级进行;(4)归纳总结作出整个题目的结论。 4.等价转化思想 等价转化是指同一命题的等价形式.可以通过变量问题的条件和结论,或通过适当的代换转化问题的形式,或利用互为逆否命题的等价关系来实现。 常用的转化策略有:已知与未知的转化;正向与反向的转化;数与形的转化;一般于特殊的转化;复杂与简单的转化。 二、常用的数学方法 主要有换元法、配方法和待定系数法三种。 三、例题解析 【例1】(2004年北京市东城区)解方程:x+1-3x+1=2. 解:设x+1=y,则原方程化为y-3y=2 去分母,得y2-2y-3=0. 解这个方程,得y1=-1,y2=3. 当y=-1时,x+1=-1,所以x=-2; 当y=3时,x+1=3,所以x=2. 经检验,x=2和x=-2均为原方程的解. 〖点拨〗解分式方程通常是采用去分母或还元法化为整式方程,并特别要注意验根。 【例2】已知抛物线y=ax2+bx+c的对称轴为x=2,且经过点(1,4)和点(5,0),则该抛物线的解析式为 。 〖解析〗∵函数y=ax2+bx+c的对称轴为x=2,∴b=-4a …①将点(1,4)、(5,0)的坐标分别代入y=ax2+bx+c得:a+b+c=4…② 25a+5b+c=0③.解①②③得a=-12,b=2,c=52.故抛物线的解析式为y=-12x2+2x+52. 〖点拨〗利用待定系数法可求函数的解析式、代数式及多项式的因式分解等符合题设条件的数学式。 如果帮助到你请采纳噢,谢谢(´∀`)♡
高等数用更加精确式帮我重新定义概念让我初入数门几乎世界产理解
首先微部 函数极限—————包括元元函数极限函数求导及连续性奠定基础;
积部 定积定义需要用极限————使定积基础都需要用极限概念
所高等数其实极限融入自体系内基本工具
均粗浅见并未深入探讨请见谅希望题主问题理解帮助