(1)∵bn=
=1 (2n+1)(2n+3)
(1 2
?1 2n+1
),1 2n+3
Tn=
(1 2
?1 3
+1 5
?1 5
+…+1 7
?1 2n+1
)1 2n+3
=
(1 2
?1 3
)=1 2n+3
.n 6n+9
(2)(ⅰ)∵an=2n,∴an+1=an+2,
故数列{an}是“M类数列”,对应的实常数p、q的值分别为1、2.
(ⅱ)∵数列{dn}是“M类数列”,
∴存在实常数p、q使得dn+1=pdn+q对于任意n∈N*都成立,
∴dn+2=pdn+1+q,故dn+1+dn+2=p(dn+dn+1)+2q,
又dn+dn+1=3?2n,n∈N*,∴3?2n+1=p?3?2n对于任意n∈N*都成立,
即3?2n(p-2)-2q=0对于任意n∈N*都成立,因此p=2,q=0
此时dn+1=2dn,即
=2,(n∈N*)dn+1 dn
∴{dn}是首项为2,公比为2的等比数列,∴dn=2n,n∈N*.