在△ABC中,角A,B,C所对的边分别为a,b,c,满足a+cb=sinA?sinBsinA?sinC(1)求角C;(2)若c=3,a+

2025-01-05 16:53:35
推荐回答(1个)
回答1:

(1)

a+c
b
sinA?sinB
sinA?sinC
可化简为:
(a+c)(sinA-sinC)=b(sinA-sinB),
展开得sinA(a-b+c)-sinC(a+c)+bsinB=0,
由正弦定理:sinA=
a
2R
,sinC=
c
2R
,sinB=
b
2R
得:
a
2R
(a-b+c)-
c
2R
(a+c)+b
b
2R
=0,
整理得c2=a2+b2-ab;
由余弦定理知,c2=a2+b2-2abcosC,
故cosC=
1
2
,且角C为△ABC中内角,
故∠C=
π
3

(2)若a+b=3,则a2+b2+2ab=9,
由(1)知c2=a2+b2-ab,
故ab=3+
c2
3

∵c=
3

∴ab=4,
又∵∠C=
π
3
,故sin
π
3
=
3
2

故S△ABC=
1
2
absinC
=
3