(1)
=a+c b
可化简为:sinA?sinB sinA?sinC
(a+c)(sinA-sinC)=b(sinA-sinB),
展开得sinA(a-b+c)-sinC(a+c)+bsinB=0,
由正弦定理:sinA=
,sinC=a 2R
,sinB=c 2R
得:b 2R
(a-b+c)-a 2R
(a+c)+bc 2R
=0,b 2R
整理得c2=a2+b2-ab;
由余弦定理知,c2=a2+b2-2abcosC,
故cosC=
,且角C为△ABC中内角,1 2
故∠C=
.π 3
(2)若a+b=3,则a2+b2+2ab=9,
由(1)知c2=a2+b2-ab,
故ab=3+
,c2 3
∵c=
,
3
∴ab=4,
又∵∠C=
,故sinπ 3
=π 3
,
3
2
故S△ABC=
absinC=1 2
.
3