因为f(x)和g(x)均是凸函数,所以f’(x)和g'(x)均单调减少,即f''(x)<0,g''(x)<0.又因为g(x)是增函数,所以g’(x)>0.要证f[g(x)]是凸函数,即需证f'[g(x)]单调减少.任取a b(a>b),则g(a)>g(b),g'(a)