根号(1998×1999×2000×2001+1)-1的答案

2024-12-21 13:55:55
推荐回答(3个)
回答1:

a(a+1)(a+2)(a+3)+1
=[a(a+3)][(a+1)(a+2)]+1
=(a^2+3a)(a^2+3a+2)+1
=(a^2+3a)^2 +2(a^2+3a)+1
=(a^2+3a+1)^2
这里a=1998

所以
√(1998×1999×2000×2001+1)-1999^2
=a^2 +3a+1-1999^2
=1998^2 +3*1998+1-1999^2
=(1998+1999)(1998-1999)+3*1998+1
=-1998-1999+3*1998+1
=2*1998 -1998
=1998

回答2:

设1998=a
因为
a(a+1)(a+2)(a+3)+1
=a(a+3)(a+1)(a+2)+1
=(a^2+3a)(a^2+3a+2)+1
=(a^2+3a)^2+2(a^2+3a)+1
=(a^2+3a+1)^2
a(a+1)(a+2)(a+3)+1=(a^2+3a+1 )²
所以
根号(19981999×2000×2001+1)-1-1999²
=1998²+3×1998+1-(1998+1)²=1998

回答3:

设x=2000,√{x-2)(x-1)x(x+1)+1}-1
√{x^2-x)(x^2-x-2)+1}-1
设x^2-x=a
=[(a-2)a+1]
=(a-1)^2+1
=a-1+1=a=x^2-x=3998000
手打的啊,一定给我啊