怎样利用spss进行巴特利特球度检验和KMO检验

2025-02-27 06:40:22
推荐回答(5个)
回答1:

Bartlett球性检验用于检验相关阵中各变量间的相关性,是否为单位阵,即检验各个变量是否各自独立。因子分析前,首先进行KMO检验和巴特利球体检验。在因子分析中,若拒绝原假设,则说明可以做因子分析,若不拒绝原假设,则说明这些变量可能独立提供一些信息,不适合做因子分析。

因子分析前,首先进行KMO检验和巴特利球体检验。KMO检验用于检查变量间的相关性和偏相关性,取值在0~1之间。KMO统计量越接近于1,变量间的相关性越强,偏相关性越弱,因子分析的效果越好。

实际分析中,KMO统计量在0.7以上时效果比较好;当KMO统计量在0.5以下,此时不适合应用因子分析法,应考虑重新设计变量结构或者采用其他统计分析方法。

如果变量间彼此独立,则无法从中提取公因子,也就无法应用因子分析法。Bartlett球形检验判断如果相关阵是单位阵,则各变量独立因子分析法无效。由SPSS检验结果显示Sig.<0.05(即p值<0.05)时,说明各变量间具有相关性,因子分析有效。



扩展资料

Kaiser给出了常用的KMO度量标准:0.9以上表示非常适合;0.8表示适合;0.7表示一般;0.6表示不太适合;0.5以下表示极不适合。KMO统计量是取值在0和1之间。当所有变量间的简单相关系数平方和远远大于偏相关系数平方和时,KMO值接近1。

KMO值越接近于1,意味着变量间的相关性越强,原有变量越适合作因子分析;当所有变量间的简单相关系数平方和接近0时,KMO值接近0.KMO值越接近于0,意味着变量间的相关性越弱,原有变量越不适合做因子分析。

参考资料来源:百度百科-Bartlett's球状检验

参考资料来源:百度百科-KMO检验

回答2:

利用spss进行巴特利特球度检验和KMO检验的方法

1:analyze—data reduction–factory analysis,在这个对话框中选择descriptive,里面选择,kmo的值接近于1,适合做因子分析,Bartlett球度统计量越大越好,其伴随概率<0.05,说明数据适合做因子分析。

2:KMO统计量:是通过比较各变量间简单相关系数和偏相关系数的大小判断变量间的相关性,相关性强时,偏相关系数远小于简单相关系数,KMO值接近1。一般情况下,KMO>0.9非常适合因子分析;0.8<KMO<0.9适合;0.7以上尚可,0.6时效果很差,0.5以下不适宜作因子分析。

3:Bartlett’s球型检验(巴特利球形检验(Barlett Test of Sphericity)。):用于检验相关阵是否是单位阵,即各变量是否独立。它是以变量的相关系数矩阵为出发点,零假设:相关系数矩阵是一个单位阵。

如果巴特利球形检验的统计计量数值较大,且对应的相伴概率值小于用户给定的显著性水平,则应该拒绝零假设;反之,则不能拒绝零假设,认为相关系数矩阵可能是一个单位阵,不适合做因子分析。若假设不能被否定,则说明这些变量间可能各自独立提供一些信息,缺少公因子。

举例:巴特利球形检验统计量为131.051,相应的概率Sig为0.000,因此可认为相关系数矩阵与单位阵有显著差异。同时,KMO值为0.762,根据Kaiser给出的KMO度量标准可知原有变量适合作因子分析。

扩展资料:

 SPSS中KMO和Bartlett检验遇到的问题解决办法

在因子分析中,Bartlett球形检验用于考察变量之间的相关矩阵是否为单位矩阵,由于不能拒绝单位矩阵的原假设,说明数据不适合做因子分析(尤其是结构探测)。但是,不能拒绝原假设也有可能是样本量不足(尤其是自由度仅为6),这时候可以结合KMO的结果作出判断。

KMO指的是因子分析所能提取的方差比例,一般认为小于0.5就不宜再做因子分析,KMO为0.54,刚刚越过了0.5的推荐值,这表明数据有可能不够。此时可以根据分析目的而定,如果目的是探测变量之间的结构,可以考虑放弃,因为Bartlett的结果不支持,如果目的是精简变量,则可做。



回答3:

因子分析
1输入数据。
2点Analyze 下拉菜单,选Data Reduction 下的Factor 。
3打开Factor Analysis后,将数据变量逐个选中进入Variables 对话框中。
4单击主对话框中的Descriptive按扭,打开Factor Analysis: Descriptives子对话框,在Statistics栏中选择Univariate Descriptives项要求输出个变量的均值与标准差,在Correlation Matrix 栏内选择Coefficients项,要求计算相关系数矩阵,单击Continue按钮返回Factor Analysis主对话框。
5单击主对话框中的Extraction 按钮,打开如下图所示的Factor Analysis: Extraction 子对话框。在Method列表中选择默认因子抽取方法——Principal Components,在Analyze 栏中选择默认的Correlation Matrix 项要求从相关系数矩阵出发求解主成分,在Exact 栏中选择Number of Factors;6, 要求显示所有主成分的得分和所能解释的方差。单击Continue按钮返回Factor Analysis主对话框。
6单击主对话框中的OK 按钮,输出结果。
统计专业研究生工作室原创,请勿复杂粘贴

回答4:

分析-降维-因子,选中因子入框,点右侧描述按钮,如下图选中

点右侧提取按钮,如下图选中

继续-确定

回答5: