2006年高考中的二次函数问题聚焦
衡南县第五中学 周厚忠
二次函数、二次方程、二次不等式之间的一一对应关系,使它们之间网络交汇,形成一种互为工具,优势互补,为应用二次函数简化解决综合问题提供了方法和依据,也成为06年高考数学命题的亮丽的风景线.
1创造使用条件确定二次函数的表达式
(重庆) 已知定义域为R的函数f(x)满足f(f(x))- x2 +x)=f(x)- x2 +x..
(Ⅰ)若f(2)=3,求f(1);又若f(0)=a,求f(a);
(Ⅱ)设有且仅有一个实数x0,使得f(x0¬)= x0,求函数f(x)的解析表达式.
思维展示
(Ⅰ) 认识对应法则和符合函数的意义,目标意识创造使用条件,特殊赋值切入,
因为对任意xεR,有f(f(x)- x2 + x)=f(x)- x2 +x,所以f(f(2)- 22+2)=f(2)- 22+2.
又由f(2)=3,得f(3-22+2)-3-22+2,即f(1)=1.;
赋值,若f(0)=a,则f(a-02+0)=a-02+0,即f(a)=a.
(Ⅱ)认识对应法则的唯一性切入,
因为对任意xεR,有f(f(x))- x2 +x)=f(x)- x2 +x.
由题设有且只有一个实数x0,使得f(x0)=x0.,所以对任意xεR,有f(x)- x2 +x= x0.
在上式中令x= x0,有f(x0)-x + x0= x0,
又因为f(x0)= x0,所以x0- x =0,故x0=0或x0=1.
若x0=0,则f(x)- x2 +x=0,即f(x)= x2 –x. 但方程x2 –x=x有两上不同实根,与题设条件矛盾,故x2≠0.
若x2=1,则有f(x)- x2 +x=1,即f(x)= x2 –x+1.易验证该函数满足题设条件.
综上,所求函数为 f(x)= x2 –x+1(x R).
【学习体验】
如何创造使用对应法则?
认识对应法则f(f(x))- x2 +x)=f(x)- x2 +x.即f(x0)= x0 的意义,选用目标意识特殊赋值和反证法确定,其中整体变量的观念起着决定性的作用。
2二次函数在区间上的最值问题
(福建 )已知函数
(I)求 在区间 上的最大值
(II)是否存在实数 使得 的图象与 的图象有且只有三个不同的交点?若存在,求出 的取值范围;若不存在,说明理由。
【思维展示】
(I)配方研究区间和对成轴的位置关系切入,
当 即 时, 在 上单调递增,
当 即 时,
当 时, 在 上单调递减,
综上,
(II)注意定义域化归方程根的分布问题切入, 函数 的图象与 的图象有且只有三个不同的交点,即函数 的图象与 轴的正半轴有且只有三个不同的交点。借助导数解决。
当 时, 是增函数;当 时, 是减函数;
当 时, 是增函数;当 或 时,
当 充分接近0时, 当 充分大时,
要使 的图象与 轴正半轴有三个不同的交点,必须且只须
即 所以存在实数 ,使得函数 与 的图象有且只有三个不同的交点, 的取值范围为
【学习体验】
本小题主要考查函数的单调性、极值、最值等基本知识,考查运用导数研究函数性质的方法,考查运算能力,考查函数与方程、数形结合、分类与整合等数学思想方法和分析问题、解决问题的能力。
3 二次函数与不等式及方程之间的对应关系
(浙江)设 , ,f(0)f(1)>0,
求证:(Ⅰ)方程 有实根。(Ⅱ) -2< <-1;(III)设 是方程f(x)=0的两个实根,则. .
【思维展示】
从最高项系数分类切入,
(Ⅰ)若 a = 0, 则 b = -c , f (0) f (1) = c (3a + 2b + c ) ,与已知矛盾,
所以 a ≠ 0. 方程 = 0 的判别式 由条件 a + b + c = 0,
消去 b,得 ,故方程 f (x) = 0 有实根.
(Ⅱ)函数值构建不等式切入, (III)根与系数关系和系列问题上面的结论使用,
, ,所以 因为 所以 , 故 .
【学习体验】
本题主要考查二次函数的基本性质、不等式的基本性质与解法,以及综合运用所学知识分析和解决问题的能力。范围问题是个不等关系,借助题设条件构建不等式解出范围,这是不等式的一个重要应用,试结合本题好好领悟。
4 换元法化归二次在区间上问题分类求解
(江苏 )设a为实数,设函数 的最大值为g(a)。(Ⅰ)设t= ,求t的取值范围,并把f(x)表示为t的函数m(t);(Ⅱ)求g(a);(Ⅲ)试求满足 的所有实数a
【思维展示】
(Ⅰ)认识函数的实质,由确定定义域切入, 要使有t意义,必须1+x≥0且1-x≥0,即-1≤x≤1, ∴ t≥0 ① 则 t的取值范围是
由①得 ,整体变量换元沟通关系,∴m(t)=a( )+t=
(2)由题意知g(a)即为函数 的最大值。
注意到直线 是抛物线 的对称轴,从最高项系数入手,两级分类讨论。
(1)当a>0时,函数y=m(t), 的图象是开口向上的抛物线的一段,
由 <0知m(t)在 上单调递增,∴g(a)=m(2)=a+2
(2) 当a=0时,m(t)=t, ,∴g(a)=2.
(3) 当a<0时,函数y=m(t), 的图象是开口向下的抛物线的一段,
若 ,即 则
若 ,即 则
若 ,即 则
综上有
(3)分类构建方程验证求解
情形1:当 时 ,此时 , 由 ,与a<-2矛盾;
情形2:当 时,此时 , 解得, 与 矛盾;
情形3:当 时,此时 所以
情形4:当 时, ,此时 , 矛盾。
情形5:当 时, ,此时g(a)=a+2, ,由 解得 矛盾。
情形6:当a>0时, ,此时g(a)=a+2, 由 ,由a>0得a=1.
综上知,满足 的所有实数a为 或a=1。
【学习体验】
研究函数让定义域先行往往能寻求到思维的切入点,本题认识函数揭示的两变量的唯一对应关系,求定义域对应法则条件下平方,换元沟通关系,将问题化归二次函数在区间上的最值研究和构建方程待定参数,这些都是高考命题的热点,应深入研究,不断提高应用函数解决问题的能力。
最高项系数含参数时采用两级分类的方法,第一级系数为0和不为零,不为0再分两类,在这两类下都化归为二次二次在区间上的问题,研究对称轴和区间的关系分3类研究,应学会这种思维方法,对于复杂的问题的研究达到“既不重复又不遗漏”使“分类完备”。
本小题主要考查函数、方程等基本知识,考查分类讨论的数学思想方法和综合运用数学知识分析问题、解决问题的能力,你体会到了吗?