1⼀(1×2×3)+ 1⼀(2×3×4)+1⼀(3×4×5)+……+ 1⼀(20×21×22) = 怎样计算

小学奥数题,用简便方法计算。谢谢大家。
2024-12-26 03:02:35
推荐回答(3个)
回答1:

1/n(n+1)(n+2)=[1/n(n+1)-1/(n+1)(n+2)]*1/2
1/(1×2×3)+ 1/(2×3×4)+1/(3×4×5)+……+ 1/(20×21×22)
=(1/1*2-1/2*3+1/2*3-1/3*4+1/3*4-1/4*5+……+1/20*21-1/21*22)*1/2
=(1/2-1/21*22)*1/2
=115/462

回答2:

1/(1*2*3)=[1/1*2 -1/2*3]*1/2
以此类推
原式=1/2*(1/1*2-1/2*3+1/2*3-1/3*4+1/3*4-1/4*5+...+1/20*21- 1/21*22)
=1/2*(1/2-1/21*22)
=115/462

回答3:

原式=1/2*(1/1*2-1/2*3+1/2*3-1/3*4+1/3*4-1/4*5+...+1/20*21- 1/21*22)
=1/2*(1/2-1/21*22)
=115/462