y=lnx的性质是什么?

2025-02-23 06:45:30
推荐回答(1个)
回答1:

lnx是以e为底的对数函数,其中e是一个无限不循环小数,其值约等于2.71828182845函数的图象是过点(1,0)的一条C型的曲线。

串过第一,第四象限,且第四象限的曲线逐渐靠近Y轴,但不相交,第一象限的曲线逐渐的远离X轴。其定义域:x>0值域:y(无穷)。

对数函数是6类基本初等函数之一。其中对数的定义:

如果ax=N(a>0,且a≠1),那么数x叫做以a为底N的对数,记作x=logaN,读作以a为底N的对数,其中a叫做对数的底数,N叫做真数。

一般地,函数y=logax(a>0,且a≠1)叫做对数函数,也就是说以幂(真数)为自变量,指数为因变量,底数为常量的函数,叫对数函数。

其中x是自变量,函数的定义域是(0,+∞),即x>0。它实际上就是指数函数的反函数,可表示为x=ay。因此指数函数里对于a的规定,同样适用于对数函数。

“log”是拉丁文logarithm(对数)的缩写,读作:[英][lɔɡ][美][lɔɡ, lɑɡ]。