原式=[3*sinx+x^2*cos(1/x)]/[2(cos(x/2))^2*ln(1+x)]
=[3*sinx+x^2*cos(1/x)]/[2(cos(x/2))^2*x]……ln(1+x)~x
=3*sinx/[2(cos(x/2))^2*x]+x*cos(1/x)/[2(cos(x/2))^2]……(两个极限都存在,可以分开)
=3/2+0=3/2
3/2
解析:
f(x)
=[3sinx+x²cos(1/x)]/[(1+cosx)ln(1+x)]
=[3sinx/x+xcos(1/x)]/[(1+cosx)ln(1+x)/x]
x→0时,
limf(x)
=(3●1+0●M)/(2●1)
=3/2
可用等价无穷小量,
原式=lim
=lim
=3/2.
当x->0, sinx等价x, ln(1+x)等价x
所以,原式=lim(x->0) (3x + x^2 cos1/x)/[(1+cosx)*x]
=lim(x->0) 3x/[(1+cosx)*x]
=3/2