(1)∵a1,a3,a7成等比数列.∴a32=a1a7,即(a1+2d)2=a1(a1+6d),化简得d= 1 2 a1,d=0(舍去).∴S3=3a1+ 3×2 2 × 1 2 a1= 9 2 a1=9,得a1=2,d=1.∴an=a1+(n-1)d=2+(n-1)=n+1,即an=n+1.(2)∵bn=2an=2n+1,∴b1=4, bn+1 bn =2.∴{bn}是以4为首项,2为公比的等比数列,∴Tn= 4(1?2n) 1?2 =2n+2-4.