a=sinα,b=cosα,c=2cosβ,d=2sinβ,α,β∈﹙0,π/2﹚2sinαcosβ+2cosαsinβ=2sin(α+β)=1α+β=π/2(a+b)/(c+d)=√2sin(α+π/4)/[2√2sin(β+π/4)]=sin(α+π/4)/[2sin(3π/4-α)]=sin(α+π/4)/[2sin(α+π/4)]=1/2
得a,b 为1c,d为2∵ac+bd=2∴a+b=2c+d=4∴为1/2