假设底角为45°,那么顶角是90° 以其中一条腰的中点,作一条到这条腰相对的底角的垂线,把它分成两个三角形我们把上面的△设为①,另一个设为② △①=a×a×1/2×1/2=1/4×a×a,那么三角形的底边上的高是1/4×a×a÷(1/2a)=1/2a=a/2 所以a/2×a=a²/2
解法二:
作腰的延长线可得,腰上的高h/底边=sin15。而底边的一半/腰=cos15,即底边=2*腰*cos15。
所以:腰上的高=底边*sin15=2*腰*cos15*sin15=a/2
a×a/2=a²/2