已知a+b+c=1,求证ab+bc+ca<=1⼀3

2024-12-16 09:22:57
推荐回答(2个)
回答1:

1=(a+b+c)^2=a^2+b^2+c^2+2ab+2bc+2ac=1/2(a^2+b^2)+1/2(b^2+c^2)+1/2(a^2+c^2)+2ab+2bc+2ac>=ab+bc+ac+2ab+2bc+2ac=3ab+3bc+3ac=3(ab+bc+ac)
故而ab+bc+ca<=1/3

回答2:

ab+bc+ca<=(a^2+b^2+b^2+c^2+c^2+a^2)/2=a^2+b^2+c^2

仅当a=b=c成立 a=b=c=1/3
所以
ab+bc+ca<=1/3