1=(a+b+c)^2=a^2+b^2+c^2+2ab+2bc+2ac=1/2(a^2+b^2)+1/2(b^2+c^2)+1/2(a^2+c^2)+2ab+2bc+2ac>=ab+bc+ac+2ab+2bc+2ac=3ab+3bc+3ac=3(ab+bc+ac)故而ab+bc+ca<=1/3
ab+bc+ca<=(a^2+b^2+b^2+c^2+c^2+a^2)/2=a^2+b^2+c^2仅当a=b=c成立 a=b=c=1/3所以ab+bc+ca<=1/3