极限形式为零除以零型,直接用洛必达法则对上下求导,得2cosxsinx即为sin2x,当X趋于9时,极限为sin18
解:
lim [(sinx)^2-sin(9)^2]/(x-9)
=(sinx+sin9)(sinx-sin9)/(x-9)=(sinx+sin9)*lim(sinx-sin9)/(x-9)=2sin9*2sin((x-9)/2)(cos(x+9)/2)/(x-9)
=2sin9*cos((x+9)/2)*2*limsin((x-9)/2)/(x-9)
=2*sin9*cos9*2*(1/2)=sin18
我不告诉你答案,分子就是平方差公式,拆开就好了,书上不是有个公式sinx/x=1
你把X-9当作一个整体就好了
剩下就是把9代入就可以了