a-b=根号6+根号5,b-c=根号6-根号5,两式相加得
a-c=2根号6
2(a^2+b^2+c^2-ab-ac-bc)=(a-b)^2+(a-c)^2+(b-c)^2
2(a^2+b^2+c^2-ab-ac-bc)
=(a-b)^2+(a-c)^2+(b-c)^2
=(根号6+根号5)^2+(2根号6)^2+(根号6-根号5)^2
=6+5+2根号30+24+5+6-2根号30
=46.
所以:a^2+b^2+c^2-ab-ac-bc=23
a-b=√6+√5,b-c=√6-√5,两式相加得 a-c=2√6
a^2+b^2+c^2-ab-ac-bc
=1/2(a^2-2ab +b^2 + a^2 -2ac+ c^2 +b^2-2bc+ c^2)
=1/2[(a-b)^2 +(a-c)^2+(b-c)^2]
=1/2[(√6+√5)^2 +(2√6)^2+(√6-√5)^2]
=1/2(6+5+2√30+36+6-2√30+5)
=1/2 *48
=24