标志寄存器里面有标志位用来判断CPU的状态:
比如:OF: 溢出标志位OF用于反映有符号数加减运算所得结果是否溢出。如果运算结果超过当前运算位数所能表示的范围,则称为溢出,OF的值被置为1,否则,OF的值被清为0.
DF: 方向标志DF位用来决定在串操作指令执行时有关指针寄存器发生调整的方向。
IF: 中断允许标志IF位用来决定CPU是否响应CPU外部的可屏蔽中断发出的中断请求。但不管该标志为何值,CPU都必须响应CPU外部的不可屏蔽中断所发出的中断请求,以及CPU内部产生的中断请求。具体规定如下:
(1)、当IF=1时,CPU可以响应CPU外部的可屏蔽中断发出的中断请求;
(2)、当IF=0时,CPU不响应CPU外部的可屏蔽中断发出的中断请求。
TF: 状态控制标志位是用来控制CPU操作的,它们要通过专门的指令才能使之发生改变
SF: 符号标志SF用来反映运算结果的符号位,它与运算结果的最高位相同。在微机系统中,有符号数采用补码表示法,所以,SF也就反映运算结果的正负号。运算结果为正数时,SF的值为0,否则其值为1。
ZF: 零标志ZF用来反映运算结果是否为0。如果运算结果为0,则其值为1,否则其值为0。在判断运算结果是否为0时,可使用此标志位。
AF: 下列情况下,辅助进位标志AF的值被置为1,否则其值为0:
(1)、在字操作时,发生低字节向高字节进位或借位时;
(2)、在字节操作时,发生低4位向高4位进位或借位时。
PF: 奇偶标志PF用于反映运算结果中“1”的个数的奇偶性。如果“1”的个数为偶数,则PF的值为1,否则其值为0。
CF: 进位标志CF主要用来反映运算是否产生进位或借位。如果运算结果的最高位产生了一个进位或借位,那么,其值为1,否则其值为0。)
运算器主要是运算的功能,数字运算,逻辑运算!
运算器、控制器合称为CPU,也就是电脑的心脏!
请用百度。 “什么是寄存器” “什么是运算器”
掌握一个工具 比掌握一项技术 不仅简单,而且快捷方便得多
寄存器目录[隐藏]
英文名称:Register
[编辑本段]寄存器定义
寄存器是中央处理器内的组成部份。寄存器是有限存贮容量的高速存贮部件,它们可用来暂存指令、数据和位址。在中央处理器的控制部件中,包含的寄存器有指令寄存器(IR)和程序计数器(PC)。在中央处理器的算术及逻辑部件中,包含的寄存器有累加器(ACC)。
寄存器是内存阶层中的最顶端,也是系统获得操作资料的最快速途径。寄存器通常都是以他们可以保存的位元数量来估量,举例来说,一个 “8 位元寄存器”或 “32 位元寄存器”。寄存器现在都以寄存器档案的方式来实作,但是他们也可能使用单独的正反器、高速的核心内存、薄膜内存以及在数种机器上的其他方式来实作出来。
寄存器通常都用来意指由一个指令之输出或输入可以直接索引到的暂存器群组。更适当的是称他们为 “架构寄存器”。
例如,x86 指令及定义八个 32 位元寄存器的集合,但一个实作 x86 指令集的 CPU 可以包含比八个更多的寄存器。
寄存器是CPU内部的元件,寄存器拥有非常高的读写速度,所以在寄存器之间的数据传送非常快。
[编辑本段]寄存器用途
1.可将寄存器内的数据执行算术及逻辑运算;
2.存于寄存器内的地址可用来指向内存的某个位置,即寻址;
3.可以用来读写数据到电脑的周边设备。
[编辑本段]数据寄存器
8086 有14个16位寄存器,这14个寄存器按其用途可分为(1)通用寄存器、(2)指令指针、(3)标志寄存器和(4)段寄存器等4类。
(1)通用寄存器有8个, 又可以分成2组,一组是数据寄存器(4个),另一组是指针寄存器及变址寄存器(4个).
数据寄存器分为:
AH&AL=AX(accumulator):累加寄存器,常用于运算;在乘除等指令中指定用来存放操作数,另外,所有的I/O指令都使用这一寄存器与外界设备传送数据.
BH&BL=BX(base):基址寄存器,常用于地址索引;
CH&CL=CX(count):计数寄存器,常用于计数;常用于保存计算值,如在移位指令,循环(loop)和串处理指令中用作隐含的计数器.
DH&DL=DX(data):数据寄存器,常用于数据传递。
他们的特点是,这4个16位的寄存器可以分为高8位: AH, BH, CH, DH.以及低八位:AL,BL,CL,DL。这2组8位寄存器可以分别寻址,并单独使用。
另一组是指针寄存器和变址寄存器,包括:
SP(Stack Pointer):堆栈指针,与SS配合使用,可指向目前的堆栈位置;
BP(Base Pointer):基址指针寄存器,可用作SS的一个相对基址位置;
SI(Source Index):源变址寄存器可用来存放相对于DS段之源变址指针;
DI(Destination Index):目的变址寄存器,可用来存放相对于 ES 段之目的变址指针。
这4个16位寄存器只能按16位进行存取操作,主要用来形成操作数的地址,用于堆栈操作和变址运算中计算操作数的有效地址。
(2) 指令指针IP(Instruction Pointer)
指令指针IP是一个16位专用寄存器,它指向当前需要取出的指令字节,当BIU从内存中取出一个指令字节后,IP就自动加1,指向下一个指令字节。注意,IP指向的是指令地址的段内地址偏移量,又称偏移地址(Offset Address)或有效地址(EA,Effective Address)。
(3)标志寄存器FR(Flag Register)
8086有一个18位的标志寄存器FR,在FR中有意义的有9位,其中6位是状态位,3位是控制位。
OF: 溢出标志位OF用于反映有符号数加减运算所得结果是否溢出。如果运算结果超过当前运算位数所能表示的范围,则称为溢出,OF的值被置为1,否则,OF的值被清为0。
DF:方向标志DF位用来决定在串操作指令执行时有关指针寄存器发生调整的方向。
IF:中断允许标志IF位用来决定CPU是否响应CPU外部的可屏蔽中断发出的中断请求。但不管该标志为何值,CPU都必须响应CPU外部的不可屏蔽中断所发出的中断请求,以及CPU内部产生的中断请求。具体规定如下:
(1)、当IF=1时,CPU可以响应CPU外部的可屏蔽中断发出的中断请求;
(2)、当IF=0时,CPU不响应CPU外部的可屏蔽中断发出的中断请求。
TF:跟踪标志TF。该标志可用于程序调试。TF标志没有专门的指令来设置或清楚。
(1)如果TF=1,则CPU处于单步执行指令的工作方式,此时每执行完一条指令,就显示CPU内各个寄存器的当前值及CPU将要执行的下一条指令。
(2)如果TF=0,则处于连续工作模式。
SF:符号标志SF用来反映运算结果的符号位,它与运算结果的最高位相同。在微机系统中,有符号数采用补码表示法,所以,SF也就反映运算结果的正负号。运算结果为正数时,SF的值为0,否则其值为1。
ZF: 零标志ZF用来反映运算结果是否为0。如果运算结果为0,则其值为1,否则其值为0。在判断运算结果是否为0时,可使用此标志位。
AF:下列情况下,辅助进位标志AF的值被置为1,否则其值为0:
(1)、在字操作时,发生低字节向高字节进位或借位时;
(2)、在字节操作时,发生低4位向高4位进位或借位时。
PF:奇偶标志PF用于反映运算结果中“1”的个数的奇偶性。如果“1”的个数为偶数,则PF的值为1,否则其值为0。
CF:进位标志CF主要用来反映运算是否产生进位或借位。如果运算结果的最高位产生了一个进位或借位,那么,其值为1,否则其值为0。)
4)段寄存器(Segment Register)
为了运用所有的内存空间,8086设定了四个段寄存器,专门用来保存段地址:
CS(Code Segment):代码段寄存器;
DS(Data Segment):数据段寄存器;
SS(Stack Segment):堆栈段寄存器;
ES(Extra Segment):附加段寄存器。
当一个程序要执行时,就要决定程序代码、数据和堆栈各要用到内存的哪些位置,通过设定段寄存器 CS,DS,SS 来指向这些起始位置。通常是将DS固定,而根据需要修改CS。所以,程序可以在可寻址空间小于64K的情况下被写成任意大小。 所以,程序和其数据组合起来的大小,限制在DS 所指的64K内,这就是COM文件不得大于64K的原因。8086以内存做为战场,用寄存器做为军事基地,以加速工作。
以上是8086寄存器的整体概况, 自80386开始,PC进入32bit时代,其寻址方式,寄存器大小,功能等都发生了变化。
=============================以下是80386的寄存器的一些资料======================================
寄存器都是32-bits宽。
A、通用寄存器
下面介绍通用寄存器及其习惯用法。顾名思义,通用寄存器是那些你可以根据自己的意愿使用的寄存器,修改他们的值通常不会对计算机的运行造成很大的影响。通用寄存器最多的用途是计算。
EAX:通用寄存器。相对其他寄存器,在进行运算方面比较常用。在保护模式中,也可以作为内存偏移指针(此时,DS作为段 寄存器或选择器)
EBX:通用寄存器。通常作为内存偏移指针使用(相对于EAX、ECX、EDX),DS是默认的段寄存器或选择器。在保护模式中,同样可以起这个作用。
ECX:通用寄存器。通常用于特定指令的计数。在保护模式中,也可以作为内存偏移指针(此时,DS作为 寄存器或段选择器)。
EDX:通用寄存器。在某些运算中作为EAX的溢出寄存器(例如乘、除)。在保护模式中,也可以作为内存偏移指针(此时,DS作为段 寄存器或选择器)。
同AX分为AH&AL一样,上述寄存器包括对应的16-bit分组和8-bit分组。
B、用作内存指针的特殊寄存器
ESI:通常在内存操作指令中作为“源地址指针”使用。当然,ESI可以被装入任意的数值,但通常没有人把它当作通用寄存器来用。DS是默认段寄存器或选择器。
EDI:通常在内存操作指令中作为“目的地址指针”使用。当然,EDI也可以被装入任意的数值,但通常没有人把它当作通用寄存器来用。DS是默认段寄存器或选择器。
EBP:这也是一个作为指针的寄存器。通常,它被高级语言编译器用以建造‘堆栈帧'来保存函数或过程的局部变量,不过,还是那句话,你可以在其中保存你希望的任何数据。SS是它的默认段寄存器或选择器。
注意,这三个寄存器没有对应的8-bit分组。换言之,你可以通过SI、DI、BP作为别名访问他们的低16位,却没有办法直接访问他们的低8位。
C、段选择器:
实模式下的段寄存器到保护模式下摇身一变就成了选择器。不同的是,实模式下的“段寄存器”是16-bit的,而保护模式下的选择器是32-bit的。
CS 代码段,或代码选择器。同IP寄存器(稍后介绍)一同指向当前正在执行的那个地址。处理器执行时从这个寄存器指向的段(实模式)或内存(保护模式)中获取指令。除了跳转或其他分支指令之外,你无法修改这个寄存器的内容。
DS 数据段,或数据选择器。这个寄存器的低16 bit连同ESI一同指向的指令将要处理的内存。同时,所有的内存操作指令 默认情况下都用它指定操作段(实模式)或内存(作为选择器,在保护模式。这个寄存器可以被装入任意数值,然而在这么做的时候需要小心一些。方法是,首先把数据送给AX,然后再把它从AX传送给DS(当然,也可以通过堆栈来做).
ES 附加段,或附加选择器。这个寄存器的低16 bit连同EDI一同指向的指令将要处理的内存。同样的,这个寄存器可以被装入任意数值,方法和DS类似。
FS F段或F选择器(推测F可能是Free?)。可以用这个寄存器作为默认段寄存器或选择器的一个替代品。它可以被装入任何数值,方法和DS类似。
GS G段或G选择器(G的意义和F一样,没有在Intel的文档中解释)。它和FS几乎完全一样。
SS 堆栈段或堆栈选择器。这个寄存器的低16 bit连同ESP一同指向下一次堆栈操作(push和pop)所要使用的堆栈地址。这个寄存器也可以被装入任意数值,你可以通过入栈和出栈操作来给他赋值,不过由于堆栈对于很多操作有很重要的意义,因此,不正确的修改有可能造成对堆栈的破坏。
* 注意 一定不要在初学汇编的阶段把这些寄存器弄混。他们非常重要,而一旦你掌握了他们,你就可以对他们做任意的操作了。段寄存器,或选择器,在没有指定的情况下都是使用默认的那个。这句话在现在看来可能有点稀里糊涂,不过你很快就会在后面知道如何去做。
指令指针寄存器:
EIP 这个寄存器非常的重要。这是一个32位宽的寄存器 ,同CS一同指向即将执行的那条指令的地址。不能够直接修改这个寄存器的值,修改它的唯一方法是跳转或分支指令。(CS是默认的段或选择器)
上面是最基本的寄存器。下面是一些其他的寄存器,你甚至可能没有听说过它们。(都是32位宽):
CR0, CR2, CR3(控制寄存器)。举一个例子,CR0的作用是切换实模式和保护模式。
还有其他一些寄存器,D0, D1, D2, D3, D6和D7(调试寄存器)。他们可以作为调试器的硬件支持来设置条件断点。
TR3, TR4, TR5, TR6 和 TR? 寄存器(测试寄存器)用于某些条件测试。
[编辑本段]寄存器分类
数据寄存器 - 用来储存整数数字(参考以下的浮点寄存器)。在某些简单/旧的 CPU,特别的数据寄存器是累加器,作为数学计算之用。
地址寄存器 - 持有存储器地址,以及用来访问存储器。在某些简单/旧的CPU里,特别的地址寄存器是索引寄存器(可能出现一个或多个)。
通用目的寄存器 (GPRs) - 可以保存数据或地址两者,也就是说他们是结合 数据/地址 寄存器的功用。
浮点寄存器 (FPRs) - 用来储存浮点数字。
常数寄存器 - 用来持有只读的数值(例如 0、1、圆周率等等)。
向量寄存器 - 用来储存由向量处理器运行SIMD(Single Instruction, Multiple Data)指令所得到的数据。
特殊目的寄存器 - 储存CPU内部的数据,像是程序计数器(或称为指令指针),堆栈寄存器,以及状态寄存器(或称微处理器状态字组)。
指令寄存器(instruction register) - 储存现在正在被运行的指令
索引寄存器(index register) - 是在程序运行实用来更改运算对象地址之用。
在某些架构下,模式指示寄存器(也称为“机器指示寄存器”)储存和设置跟处理器自己有关的数据。由于他们的意图目的是附加到特定处理器的设计,因此他们并不被预期会成微处理器世代之间保留的标准。
有关从 随机存取存储器 提取信息的寄存器与CPU(位于不同芯片的储存寄存器集合)
存储器缓冲寄存器(Memory buffer register)
存储器数据寄存器(Memory data register)
存储器地址寄存器(Memory address register)
存储器型态范围寄存器(Memory Type Range Registers)[1][2]
我的百科 我的贡献草稿箱蝶恋花linda 助理 三级(905) | 我的百科 | 我的知道 | 我的消息(0/1) | 我的空间 | 百度首页 | 退出
新闻 网页 贴吧 知道 MP3 图片 视频 百科 帮助设置
添加到搜藏 返回百度百科首页
编辑词条 运算器目录[隐藏]
简介
数据
操作
运算方法
结构
运算器
发展
[编辑本段]简介
运算器:arithmetic unit,计算机中执行各种算术和逻辑运算操作的部件。运算器由:算术逻辑单元(ALU)、累加器、状态寄存器、通用寄存器组等组成。算术逻辑运算单元(ALU)的基本功能为加、减、乘、除四则运算,与、或、非、异或等逻辑操作,以及移位、求补等操作。计算机运行时,运算器的操作和操作种类由控制器决定。运算器处理的数据来自存储器;处理后的结果数据通常送回存储器,或暂时寄存在运算器中。
[编辑本段]数据
运算器的处理对象是数据,所以数据长度和计算机数据表示方法,对运算器的性能影响极大。70年代微处理器常以1个、4个、8个、16个二进制位作为处理数据的基本单位。大多数通用计算机则以16、32、64位作为运算器处理数据的长度。能对一个数据的所有位同时进行处理的运算器称为并行运算器。如果一次只处理一位,则称为串行运算器。有的运算器一次可处理几位 (通常为6或8位),一个完整的数据分成若干段进行计算,称为串/并行运算器。运算器往往只处理一种长度的数据。有的也能处理几种不同长度的数据,如半字长运算、双倍字长运算、四倍字长运算等。有的数据长度可以在运算过程中指定,称为变字长运算。
按照数据的不同表示方法,可以有二进制运算器、十进制运算器、十六进制运算器、定点整数运算器、定点小数运算器、浮点数运算器等。按照数据的性质,有地址运算器和字符运算器等。
[编辑本段]操作
运算器能执行多少种操作和操作速度,标志着运算器能力的强弱,甚至标志着计算机本身的能力。运算器最基本的操作是加法。一个数与零相加,等于简单地传送这个数。将一个数的代码求补,与另一个数相加,相当于从后一个数中减去前一个数。将两个数相减可以比较它们的大小。
左右移位是运算器的基本操作。在有符号的数中,符号不动而只移数据位,称为算术移位。若数据连同符号的所有位一齐移动,称为逻辑移位。若将数据的最高位与最低位链接进行逻辑移位,称为循环移位。
运算器的逻辑操作可将两个数据按位进行与、或、异或,以及将一个数据的各位求非。有的运算器还能进行二值代码的16种逻辑操作。
乘、除法操作较为复杂。很多计算机的运算器能直接完成这些操作。乘法操作是以加法操作为基础的,由乘数的一位或几位译码控制逐次产生部分积,部分积相加得乘积。除法则又常以乘法为基础,即选定若干因子乘以除数,使它近似为1,这些因子乘被除数则得商。没有执行乘法、除法硬件的计算机可用程序实现乘、除,但速度慢得多。有的运算器还能执行在一批数中寻求最大数,对一批数据连续执行同一种操作,求平方根等复杂操作。
[编辑本段]运算方法
实现运算器的操作,特别是四则运算,必须选择合理的运算方法。它直接影响运算器的性能,也关系到运算器的结构和成本。另外,在进行数值计算时,结果的有效数位可能较长,必须截取一定的有效数位,由此而产生最低有效数位的舍入问题。选用的舍入规则也影响到计算结果的精确度。
[编辑本段]结构
运算器包括寄存器、执行部件和控制电路3个部分。
在典型的运算器中有3个寄存器:接收并保存一个操作数的接收寄存器;保存另一个操作数和运算结果的累加寄存器;在进行乘、除运算时保存乘数或商数的乘商寄存器。执行部件包括一个加法器和各种类型的输入输出门电路。控制电路按照一定的时间顺序发出不同的控制信号,使数据经过相应的门电路进入寄存器或加法器,完成规定的操作。
为了减少对存储器的访问,很多计算机的运算器设有较多的寄存器,存放中间计算结果,以便在后面的运算中直接用作操作数。
为了提高运算速度,某些大型计算机有多个运算器。它们可以是不同类型的运算器,如定点加法器、浮点加法器、乘法器等,也可以是相同类型的运算器。
[编辑本段]运算器
由算术逻辑单元(ALU)、累加寄存器、数据缓冲寄存器和状态条件寄存器组成,它是数据加工处理部件。相对控制器而言,运算器接受控制器的命令而进行动作 ,即运算器所进行的全部操作都是由控制器发出的控制信号来指挥的所以它是执行部件。
主要功能:
执行所有的算术运算;
执行所有的逻辑运算,并进行逻辑测试,如零值测试或两个值的比较。
[编辑本段]发展
公元前5世纪,中国人发明了算盘,广泛应用于商业贸易中,算盘被认为是最早的计算机,并一直使用至今。算盘在某些方面的运算能力要超过目前的计算机,算盘的方面体现了中国人民的智慧。
直到17世纪,计算设备才有了第二次重要的进步。1642年,法国人Blaise Pascal(1623-1662)发明了自动进位加法器,称为Pascalene。1694年,德国数学家Gottfried Wilhemvon Leibniz(1646-1716)改进了Pascaline,使之可以计算乘法。后来,法国人Charles Xavier Thomas de Colmar发明了可以进行四则运算的计算器。
现代计算机的真正起源来自英国数学教授Charles Babbage。Charles Babbage发现通常的计算设备中有许多错误,在剑桥学习时,他认为可以利用蒸汽机进行运算。起先他设计差分机用于计算导航表,后来,他发现差分机只是专门用途的机器,于是放弃了原来的研究,开始设计包含现代计算机基本组成部分的分析机。(Analytical Engine)
Babbage的蒸汽动力计算机虽然最终没有完成,以今天的标准看也是非常原始的,然而,它勾画出现代通用计算机的基本功能部分,在概念上是一个突破。
在接下来的若干年中,许多工程师在另一些方面取得了重要的进步,美国人Herman Hollerith(1860-1929),根据提花织布机的原理发明了穿孔片计算机,并带入商业领域建立公司。
都是网上搜的,太长了,放不下,给你网址自己去看吧:http://baike.baidu.com/view/147768.htm
http://baike.baidu.com/view/6159.htm