∵π/2∴π/4∴sin[a-(b/2)]>0,cos[(a/2)-b]>0.∵cos[a-(b/2)]=-1/9,sin[(a/2)-b]=2/3,∴sin[a-(b/2)]=4√5/9,cos[(a/2)-b]=√5/3.故cos(a+b)=2cos²[(a+b)/2]-1 =2cos²[(a-b/2)-(a/2-b)]-1 =2[cos(a-b/2)cos(a/2-b)+sin(a-b/2)sin(a/2-b)]²-1 =2[(-1/9)(√5/3)+(4√5/9)(2/3)]²-1 =-239/729.
π/4所以π/4所以sin(a-b/2)>0,cos(a/2-b)>0 [sin(a-b/2)]^2=1-[cos(a-b/2)]^2=1-1/81=80/81 所以sin(a-b/2)=4(根号5)/9 同理,cos(a/2-b)=根号5/3 sin(a/2-b)+sin(a-b/2)=2sin[3(a-b)/4]*cos[(a+b)/4] cos(a/2-b)-cos(a-b/2)=2sin[3(a-b)/4]*sin[(a+b)/4] 两式相除得:tan[(a+b)/4]=[√5/3-(-1/9)]/[2/3+4√5/9] 然后利用万能公式,即可求出cos[(a+b)/2]来