已知cos[a-(b⼀2)]=-1⼀9,sin[(a⼀2)-b]=2⼀3.且π⼀2<a<π,0<b<π⼀2,求cos(a+B)的值?

RT
2024-12-19 13:48:10
推荐回答(2个)
回答1:

∵π/2∴π/4∴sin[a-(b/2)]>0,cos[(a/2)-b]>0.
∵cos[a-(b/2)]=-1/9,sin[(a/2)-b]=2/3,
∴sin[a-(b/2)]=4√5/9,cos[(a/2)-b]=√5/3.
故cos(a+b)=2cos²[(a+b)/2]-1
=2cos²[(a-b/2)-(a/2-b)]-1
=2[cos(a-b/2)cos(a/2-b)+sin(a-b/2)sin(a/2-b)]²-1
=2[(-1/9)(√5/3)+(4√5/9)(2/3)]²-1
=-239/729.