讨论分段函数y(x)在x=0处的连续性和可导性

2025-02-24 03:52:28
推荐回答(2个)
回答1:

连续性:左连续:limx->0-
(-x)=0
右连续:limx->0+
(x)=0
左连续=右连续
所以函数y在x=0出连续。
可导性:左导数:limx->0+
(-x-0)/(x-0)=-1,右导数:limx->0-
(x-0)/(x-0)=1
由于左右导数不相等,所以函数y在x=0处不可导。
注意:x-0时,y=0。同时,在图形上可以看出x=0处是一个折点。

回答2:

无穷小和有界函数相乘结果是无穷小
sin(1/x)和cos(1/x)均为有界函数
故lim(x→0)x^2*sin(1/x)=lim(x→0)x^2*cos(1/x)=lim(x→0)x*sin(1/x)=lim(x→0)x*cos(1/x)=0
故在x=0处连续、可导
PS:左为从数轴左边趋近,应趋近(0-),右为从数轴右边趋近,应趋近(0+)。