不是象你理解那样。从结构来看,基本上变频器和伺服驱动器是差不多的,只是一般来说,变频器功率大,体积大些而已,大家都是整流、稳压后逆变输出一个可以调整电压和频率的电源而已。从控制方式来看,普通变频器采用V/F控制,算法比较简单,一般都是开环的;矢量变频器可以加编码器,有解耦等算法,而伺服也差不多是通过解藕等算法实现控制的,这点而言矢量变频器和伺服控制原理差不多,只是伺服驱动器里边一般内置了位置环、速度环和电流环,而矢量变频器一般只有速度环环合电流环。从精度而言,伺服选用材料性能比较好,精度比较高,比如伺服驱动器的模块一般用IPM,而变频器一般用IGBT,不是一个档次的了。所以可以说矢量变频器和伺服驱动器很相似,伺服驱动器可以说是性能和精度更高一个级别的矢量变频器。
变频器是利用电力半导体器件的通断作用将工频电源变换为另一频率的电能控制装置。
伺服驱动器是用来控制伺服电机的一种控制器,其作用类似于变频器作用于普通交流马达。 目前主流的伺服驱动器均采用数字信号处理器(DSP)作为控制核心,可以实现比较复杂的控制算法,事项数字化、网络化和智能化。功率器件普遍采用以智能功率模块(IPM)为核心设计的驱动电路,IPM内部集成了驱动电路,同时具有过电压、过电流、过热、欠压等故障检测保护电路,在主回路中还加入软启动电路,以减小启动过程对驱动器的冲击。 功率驱动单元首先通过三相全桥整流电路对输入的三相电或者市电进行整流,得到相应的直流电。经过整流好的三相电或市电,再通过三相正弦PWM电压型逆变器变频来驱动三相永磁式同步交流伺服电机。功率驱动单元的整个过程可以简单的说就是AC-DC-AC的过程。整流单元(AC-DC)主要的拓扑电路是三相全桥不控整流电路。
伺服驱动器一般可以采用位置、速度和力矩三种控制方式,主要应用于高精度的定位系统,目前是传动技术的高端。
变频器是利用电力半导体器件的通断作用将工频电源变换为另一频率的电能控制装置。
电机起动时,起动电流和电压很高,这对电机电枢线圈不利,所以用电机启动器降低电机启动时的电流和电压。
伺服就是一个提供闭环反馈信号来控制位置和转速,伺服电机驱动器接收电机编码器的反馈信号,并和指令脉冲进行比较,从而构成了一个位置的半闭环控制,使被控系统工作在设定状态
1,变频器控制普通电机开,闭环控制选择灵活;伺服驱动器驱动专用伺服电机且为闭环控制;
2,伺服相对变频优点:定为精度高,响应快,同功率情况下体积小,缺点为:功率范围小,价格贵