x^3+2=x^3+1+1=(x+1)(x^2-x+1)+1
所以(x^3+2)/(x^2-x+1)
=[(x+1)(x^2-x+1)+1]/(x^2-x+1)
=(x+1)(x^2-x+1)/(x^2-x+1)+1/(x^2-x+1)
=x+1+1/(x^2-x+1)
同理
(x^3-2)/(x^2+x+1)
=x-1-1/(x^2+x+1)
所以x+1+1/(x^2-x+1)+x-1-1/(x^2+x+1)=2x
1/(x^2-x+1)-1/(x^2+x+1)=0
1/(x^2-x+1)=1/(x^2+x+1)
所以x^2-x+1=x^2+x+1
x=0
经检验,x=0不是方程的解
所以方程无解