向量 三角形问题

2024-12-29 02:05:34
推荐回答(1个)
回答1:

延长OB至B',使OB'=2OB;延长OC至C',使OC'=3OC;
连结B'C',取B'C'中点D,连结OD并延长至A',使DA'=OD;
连结B'A',C'A',则四边形OB'A'C'为平行四边形
∴2向量OB+3向量OC=向量OB'+向量OC'=向量OA'
又∵向量OA+2向量OB+3向量OC=0
即向量OA+向量OA'=0, ∴向量AO=向量OA’
所以A,O,A'三点共线,且|AO|=|OA'|
利用同底等高三角形面积相等得:
S△AOC=S△A'OC=S△OCB'=2S△BOC===>S△AOC/S△BOC=2/1