急!!一篇高中数学小论文(300字)

2025-01-07 20:52:36
推荐回答(3个)
回答1:

正余弦定理若干推论的探究与应用
(一)探究目的
正弦定理和余弦定理是高中数学中重要的三角公式,它们具有广泛的应用。而在教材中对它们的研究却比较单一。在学习上,为了开拓视野,更加体会到数学灵活多变的奥妙,我们有必要结合三角变换的知识对其进行总结、探究及延伸。因此,我们探究了它的一些变式以及应用。
(二)探究过程、应用及结论
(1)正余弦定理
1、正弦定理:a/ sinA=b/ sinB=c/ sinC =2R
2、余弦定理:a^2=b^2+c^2-2bcCosA CosA=(c^2+b^2-a^2)/2bc
b^2=a^2+c^2-2acCosB CosB=(a^2+c^2-b^2)/2ac
c^2=a^2+b^2-2abCosC CosC=(a^2+b^2-c^2)/2ab

(2)正余弦定理的推论
设三角形ABC的三个内角A、B、C所对的边分别为a、b、c,则
推论1、acosA+bcosB = ccos(A-B)≤C......①
bcosB+ccosC = acos(B-C) ≤ a......②
acosA+ccosC = bcos(A-C) ≤b......③
证明:由正弦定理得,
acosA+bcosB
=2RsinAcosA+2RsinBcosB
=R(2sinAcosA+2sinBcosB)
=R(sin2A+sin2B)
=R{sin[(A+B)+(A-B)]+sin[(A+B)-(A-B)]}
=R[sin(A+B)cos(A-B)+cos(A+B)sin(A-B)+sin(A+B)cos(A-B)-cos
(A+B)sin(A-B)]
=2Rsin(A+B) cos(A-B)
=2Rsin(�-C) cos(A-B)
=2RsinC cos(A-B)
=Ccos(A-B)
又A、B∈(0,�),-1≤cos(A-B) ≤1
∴ccos(A-B)≤C,当且仅当A=B时取等号.
同理,由三角形三边和三个角的对称性可证②③式.
应用:在⊿ABC中,求证:cosAcosBcosC ≤1/8
证明:①当⊿ABC为钝角三角形或直角三角形时,cosA、cosB、cosC其中必有一个小于等于0,故结论成立.
②若⊿ABC为锐角三角形时,由推论(1)及均值不等式得
a≥bcosB+ccosC≥2倍根号bcosBccosC>0......①
b≥acosA+ccosC≥2倍根号acosAccosC>0......②
C≥acosA+bcosB≥2倍根号acosAbcosB>0......③
①×②×③得abC≥8abCcosAcosBcosC
∴cosAcosBcosC≤1/8
结论:①在三角形中,任意两边与其对角的余弦值的和等于第三边与两
边的对角差的余弦的积,小于或等于第三边。
②三角形三个角的余弦值的积恒小于或等于1/8.
③观察式子,我们可以得出
a、若已知三角形中的两角以及对应两边,可知第三边的取值范围或最小值。
b、若已知三角形中的两角,可知三边之间的数量关系。

推论2、c/(a+b)=sin(C/2)/cos[(A-B)/2] ≥sin(C/2) ......①
b/(a+c)=sin(B/2)/cos[(A-C)/2] ≥sin(B/2) ......②
a/(b+c)=sin(A/2)/cos[(B-C)/2] ≥sin(A/2) ......③
证明:由正弦定理,
c/(a+b)=(2RsinC)/[2R(sinA+sinB)]
=sin(�-c)/(sinA+sinB)
=sin(A+B)/ (sinA+sinB)
=sin[(A+B)/2+(A+B)/2]/{sin[(A+B)/2+(A-B)/2]+
sin[(A+B)/2-(A-B)/2]}
={2sin[(A+B)/2]cos[(A+B)/2]}/{ sin[(A+B)/2]cos[(A- B)/2]+sin[(A-B)/2]cos[(A+B)/2]+sin[(A+B)/2]cos
[(A-B)/2]—sin[(A-B)/2]cos[(A+B)/2]}
={2sin[(A+B)/2]cos[(A+B)/2]}/{2sin[(A+B)/2]cos[(A- B)/2]}
=cos[(A+B)/2]/ cos[(A-B)/2]
=sin[�/2—(A+B)/2]/ cos[(A-B)/2]
=sin(C/2)/cos[(A-B)/2]
又A、B∈(0,�) ∴ 0<cos[(A-B)/2] ≤1
∴sin(C/2)/ cos[(A-B)/2]≥sin(C/2), 当且仅当A=B时取等号.
同理可证②③式.
应用:已知在⊿ABC中,设a+c=2b,A-C=60度,求sinB.
解:由题设和推论2可知,
b/(a+c)=b/2b=1/2=sin(B/2)/[cos(A-C)/2]=sin(B/2)/cos(�/6)
∴sin(B/2)=(根号3)/4
∴cos(B/2)=根号(1-sin(B/2)^2)= (根号13)/4
∴sinB=2 sin(B/2) cos(B/2)= (根号39)/2
结论:①在三角形中,任意一边与另外两边和的比值,等于该边的
半对角的正弦与另两边的对角差半角的余弦,这是模尔外得公
式的其中一组。
②应用:
a、求解斜三角形未知元素后,可用它验算。
b、若已知三边可求角的最大值。

推论3、a≥2(根号bC)sin(A/2) ......①
b≥2(根号aC)sin(B/2) ......②
c≥2(根号ab)sin(C/2) ......③
证明:∵(b-c)^2≥0 ∴b^2+c^2≥2bc
由余弦定理,a^2= b^2+c^2-2bccosA≥2bc-2bccosA
=2bc(1-cosA)=4bcsin(A/2)^2
∴a≥2(根号bC)sin(A/2), 同理可证②③式.
应用:在⊿ABC中,已知A=�/3,a=10,求bC的最大值。
解:由题设和推论3可知,10≥2(根号bC)sin(60度/2)
∴(根号bC)≤10 ∴bC≤100
故bC的最大值为100.
结论:①在三角形中,任意一边大于或等于另外两边二次方根的二倍与
该边的半对角正弦的积。
②应用:
a、已知两边和一角可求该角所对边的取值范围或最小值。
b、已知一边以及其对角可求另两边乘积的最大值。
C、已知三边可求角的最大值。

推论4、(a^2- b^2)/ c^2= (sinA^2-sinB^2)/ sinC^2……①
(b^2- c^2)/ a^2= (sinB^2-sinC^2)/ sinA^2……②
(a^2- c^2)/ b^2= (sinA^2-sinC^2)/ sinB^2……③
证明:由正弦定理得,
(a^2- b^2)/ c^2=[4R^2(sinA^2-sinB^2)]/( 4R^2*sinC^2)
=(sinA^2- sinB^2)/ sinC^2
同理可证②③式.
应用:在⊿ABC中,A、B、C的对边分别为a、b、c,证明:
(a^2- b^2)/ c^2=sin(A-B)/sinC
证明:由题设和推论4可知,
(a^2- b^2)/ c^2
=(sinA^2- sinB^2)/ sinC^2
=(sinA+sinB)(sinA-sinB)/sinC^2
={sin[(A+B)/2+(A-B)/2]+sin[(A+B)/2-(A-B)/2]}{sin[(A+B)/2+
(A-B)/2]—sin[(A+B)/2-(A-B)/2]}/{sinCsin[�—(A+B)]}
={2sin[(A+B)/2] cos[(A-B)/2]}{2cos[(A+B)/2]sin[(A-
B)/2]}/[sinCsin(A+B)]
={2sin[(A+B)/2] cos[(A+B)/2]}{2sin[(A—B)/2] cos[(A-
B)/2]}/[sinCsin(A+B)]
=[sin(A+B)sin(A—B)]/ [sin(A+B) sinC]
=sin(A—B)/ sinC
结论:①在三角形中,任意两边的平方差与第三边的平方之比等于
两边对角正弦的平方差与第三边对角的正弦的平方之比。

推论5、sinA^2= sinB^2+sinC^2-2sinBsinCcosA……①
sinB^2= sinA^2+sinC^2-2sinAsinCcosB……②
sinC^2= sinB^2+sinA^2-2sinBsinAcosC……③
证明:由正弦定理和余弦定理得,
(2RsinA)^2=(2RsinB)^2+(2RsinC)^2-2(2RsinA
(2RsinB)cosA
化简得sinA^2= sinB^2+sinC^2-2sinBsinCcosA
同理可证②③式.
应用:求(sin10度)^2+(sin50度)^2+sin10度sin50度的值.
解:构造⊿ABC,使A=10度,B=50度,C=120度,应用推论5得
原式=(sin10度)^2+(sin50度)^2-(-1/2)×2sin10度sin50

=(sin10度)^2+(sin50度)^2-2sin10度sin50度cos120度
=(sin120度)^2
=3/4
结论:①在三角形中,任意角正弦的平方等于另外两角正弦的平方
和减去2倍两角正弦与该角余弦的积。
②应用:
a、若已知任意两角角度或正弦,可求另外一角余弦及角度。
b、若式子(sinA)^2+(sinB)^2+sinAsinB满足A+B=�/3,则
其值恒为3/4.
C、若存在形如sinB^2+sinC^2-2sinBsinCcosA的式子,其值为
sinA^2.

推论6、a=bcosC+ccosB……① b=acosC+ccosA……②
c=acosB+bcosA……③
证明:由余弦定理得,
b^2+c^2=(c^2+a^2-2accosB)+(a^2+b^2-2abcosC)
化简得a=bcosC+ccosB
同理可证②③式成立.
应用:已知�、�∈(0,�/2),且3(sin�)^2+2(sin�)^2=1,
3sin2�-2Sin2�=0,求证:�+2�=90度.
证明:∵3(sin�)^2+2(sin�)^2=1
∴3(1-cos2�)/2+2(1- cos2�)/2=1
∴3cos2�+2 cos2�=3
∴2cos2�=3(1- cos2�)>0
∴3 cos2�=3-2 cos2�>0 ∴2�、2�∈(0,�/2)
又3sin2�-2Sin2�=0 ∴3/Sin2�=2/sin2�
构造⊿ABC,使A=2�,B=2�,BC=2,则AC=3
由推论6得,AB=ACcos2�+BCcos2�
= 3cos2�+2cos2�=3
∴AB=AC ∴⊿ABC为等腰三角形.
∴C=B=2�
而在⊿ABC中,A+B+C=2�+2�+2�=180度
∴�+2�=90度
结论:①推论6为著名的射影定理。
②应用:可处理边、角、弦三者的转化问题。

回答2:

容易忽略的答案》

大千世界,无奇不有,在我们数学王国里也有许多有趣的事情。比如,在我现在的第九册的练习册中,有一题思考题是这样说的:“一辆客车从东城开向西城,每小时行45千米,行了2.5小时后停下,这时刚好离东西两城的中点18千米,东西两城相距多少千米?王星与小英在解上面这道题时,计算的方法与结果都不一样。王星算出的千米数比小英算出的千米数少,但是许老师却说两人的结果都对。这是为什么呢?你想出来了没有?你也列式算一下他们两人的计算结果。”其实,这道题我们可以很快速地做出一种方法,就是:45×2.5=112.5(千米),112.5+18=130.5(千米),130.5×2=261(千米),但仔细推敲看一下,就觉得不对劲。其实,在这里我们忽略了一个非常重要的条件,就是“这时刚好离东西城的中点18千米”这个条件中所说的“离”字,没说是还没到中点,还是超过了中点。如果是没到中点离中点18千米的话,列式就是前面的那一种,如果是超过中点18千米的话,列式应该就是45×2.5=112.5(千米),112.5-18=94.5(千米),94.5×2=189(千米)。所以正确答案应该是:45×2.5=112.5(千米),112.5+18=130.5(千米),130.5×2=261(千米)和45×2.5=112.5(千米),112.5-18=94.5(千米),94.5×2=189(千米)。两个答案,也就是说王星的答案加上小英的答案才是全面的。
在日常学习中,往往有许多数学题目的答案是多个的,容易在练习或考试中被忽略,这就需要我们认真审题,唤醒生活经验,仔细推敲,全面正确理解题意。否则就容易忽略了另外的答案,犯以偏概全的错误。

关于“0”

0,可以说是人类最早接触的数了。我们祖先开始只认识没有和有,其中的没有便是0了,那么0是不是没有呢?记得小学里老师曾经说过“任何数减去它本身即等于0,0就表示没有数量。”这样说显然是不正确的。我们都知道,温度计上的0摄氏度表示水的冰点(即一个标准大气压下的冰水混合物的温度),其中的0便是水的固态和液态的区分点。而且在汉字里,0作为零表示的意思就更多了,如:1)零碎;小数目的。2)不够一定单位的数量……至此,我们知道了“没有数量是0,但0不仅仅表示没有数量,还表示固态和液态水的区分点等等。”

“任何数除以0即为没有意义。”这是小学至中学老师仍在说的一句关于0的“定论”,当时的除法(小学时)就是将一份分成若干份,求每份有多少。一个整体无法分成0份,即“没有意义”。后来我才了解到a/0中的0可以表示以零为极限的变量(一个变量在变化过程中其绝对值永远小于任意小的已定正数),应等于无穷大(一个变量在变化过程中其绝对值永远大于任意大的已定正数)。从中得到关于0的又一个定理“以零为极限的变量,叫做无穷小”。

回答3:

Easy to overlook the answer"

Fact is stranger than fiction, we also have many interesting mathematical kingdom. For example, in the ninth book, I now have a problem in the workbook, education, said: "this is a passenger train to the west, the east from 45 kilometers per hour line, stop, then after 2.5 hours just what the halfway point of the two cities from 18 km, two things WangXing? How many kilometres from town with the small English in this problem, the calculation method and the results are not the same. XingSuan king of the number of kilometers than small calculates km less, but the results of the two to say. This is why? You want to come? You count them two listed in the results." Actually, this problem is we can very quickly made a kind of method is: 45 x 2.5 = 112.5 (km), 112.5 + 18 = 130.5 (km), 130.5 * 2 = 261 (km), but look close scrutiny, he felt something was wrong. Actually, here we overlooked a very important conditions, "this is just what the halfway point of the city from the conditions of 18 kilometers away from" the word ", not to say, or more than halfway point. If it is not from the middle point to 18 kilometre, column type is the front, if is a kind of more than 18 kilometers halfway, column type should is 45 by 2.5 = 112.5 (km), 112.5-18 = 94.5 (km), 94.5 x 2 = 189 (km). So the correct answer is: 45 x 2.5 = 112.5 (km), 112.5 + 18 = 130.5 (km), 130.5 * 2 = 261 (km) and 45 x 2.5 = 112.5 (km), 112.5-18 = 94.5 (km), 94.5 x 2 = 189 (km). Two answers, i.e. WangXing answers with the small English answer is full.
In the daily learning, often have many problems, aim to answer is more in practice or neglected in the exam, we need to carefully examines the topic is, life experience, close scrutiny, correct understanding of cet4. Otherwise easily overlooked the mistake, the biased.

About "0"

0, it is the earliest human contact number. Our ancestors started only know no and have no is 0, 0, so did? Remember the elementary school teacher once said, "any number of minus itself is equal to 0, 0 means without number." That is simply not true. We all know that the 0 degrees centigrade thermometer said the freezing point of water (i.e. a standard under the pressure of the mixture of water temperature), including 0 is solid and liquid water differentiator. But in Chinese characters, 0 means that a zero, such as: 1 more pieces), Decimal purpose. 2) not certain units... Thus, we know that the "no amount is 0, but not without number, 0 solid and liquid said the differentiator, etc."

"Any divided by 0." no significance for This is the primary school teacher still talking to a conclusion about the "0", then the division (primary) is divided into several copies will be a, how much each. A whole cannot into a "0" no significance. Then I realized the a / 0 0 0 to limit can be expressed in the variable (a variable in the process of changing its absolute than any small forever is positive), shall be equal to a variable in the infinite (changes in its absolute than any big is positive). Get a theorem about 0 "zero limits of variables, called an infinitesimal".