(-X+1)/(x+1)(x+2)=A/(X+1)+B/(X+2)
右式=[A(X+2)+B(X+1)]/(x+1)(x+2)
=[X(A+B)+(2A+B)]/(x+1)(x+2)
A+B=-1
2A+B=1
A=2 B=-3
将右边通分得-X+1/(X+2)(X+1)=A(X+2)+B(X+1)/(X+1)(X+2)
所以AX+2A+BX+B=-X+1
所以A+B=-1,2A+B=1
所以A=2,B=-3
x^2-5=(2-a)*x^2+bx+c
2-a=1
a=1
bx=0
b=0
c=-5
(-x+1)/(x+1)(x+2)=1/(x+1)-1/(x+2)
a=1
b=-1
(-X+1)/(x+1)(x+2)=A/(X+1)+B/(X+2)
A/(X+1)+B/(X+2)=[A(X+2)+B(X+1)]/(x+1)(x+2)
=[X(A+B)+(2A+B)]/(x+1)(x+2)
A+B=-1
2A+B=1
A=2 B=-3